Casado-Moreno Juan, Masia Belen, Lu Nanji, Cui Lele, Consejo Alejandra
Aragon Institute for Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.
Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China.
Biomed Opt Express. 2025 Jul 7;16(8):3047-3060. doi: 10.1364/BOE.559663. eCollection 2025 Aug 1.
This study evaluates the effectiveness of deep learning techniques applied to raw Scheimpflug corneal images for keratoconus detection, with a particular focus on forme fruste (FF) keratoconus, which refers to preclinical cases. Using an original dataset of 22,750 images from 910 eyes, a deep learning model based on transfer learning with a pre-trained VGG16 architecture was trained, incorporating specific preprocessing steps and data augmentation strategies. The proposed approach achieved an overall accuracy of 90.70%, with a sensitivity of 80.57%, and a specificity of 80.56% for FF keratoconus classification, and an AUC of 0.89. For clinical keratoconus, the model demonstrated a sensitivity of 93.28%, a specificity of 99.40%, and an AUC of 1.00. These findings highlight the potential of leveraging raw Scheimpflug images in deep learning-based keratoconus detection, particularly for identifying early-stage structural changes that may not be apparent in conventional topographic assessments.
本研究评估了将深度学习技术应用于原始的Scheimpflug角膜图像以检测圆锥角膜的有效性,特别关注forme fruste(FF)圆锥角膜,即临床前期病例。使用来自910只眼睛的22750张图像的原始数据集,训练了一个基于迁移学习且采用预训练VGG16架构的深度学习模型,并纳入了特定的预处理步骤和数据增强策略。所提出的方法在FF圆锥角膜分类方面的总体准确率达到90.70%,灵敏度为80.57%,特异性为80.56%,曲线下面积(AUC)为0.89。对于临床圆锥角膜,该模型的灵敏度为93.28%,特异性为99.40%,AUC为1.00。这些发现凸显了在基于深度学习的圆锥角膜检测中利用原始Scheimpflug图像的潜力,特别是用于识别在传统地形图评估中可能不明显的早期结构变化。