Suppr超能文献

基于深度学习的动态角膜变形视频的圆锥角膜检测

Keratoconus Detection-based on Dynamic Corneal Deformation Videos Using Deep Learning.

作者信息

Abdelmotaal Hazem, Hazarbassanov Rossen Mihaylov, Salouti Ramin, Nowroozzadeh M Hossein, Taneri Suphi, Al-Timemy Ali H, Lavric Alexandru, Yousefi Siamak

机构信息

Department of Ophthalmology, Assiut University, Assuit, Egypt.

Hospital de Olhos-CRO, Guarulhos, São Paulo, Brazil.

出版信息

Ophthalmol Sci. 2023 Aug 11;4(2):100380. doi: 10.1016/j.xops.2023.100380. eCollection 2024 Mar-Apr.

Abstract

OBJECTIVE

To assess the performance of convolutional neural networks (CNNs) for automated detection of keratoconus (KC) in standalone Scheimpflug-based dynamic corneal deformation videos.

DESIGN

Retrospective cohort study.

PARTICIPANTS

We retrospectively analyzed datasets with records of 734 nonconsecutive, refractive surgery candidates, and patients with unilateral or bilateral KC.

METHODS

We first developed a video preprocessing pipeline to translate dynamic corneal deformation videos into 3-dimensional pseudoimage representations and then trained a CNN to directly identify KC from pseudoimages. We calculated the model's KC probability score cut-off and evaluated the performance by subjective and objective accuracy metrics using 2 independent datasets.

MAIN OUTCOME MEASURES

Area under the receiver operating characteristics curve (AUC), accuracy, specificity, sensitivity, and KC probability score.

RESULTS

The model accuracy on the test subset was 0.89 with AUC of 0.94. Based on the external validation dataset, the AUC and accuracy of the CNN model for detecting KC were 0.93 and 0.88, respectively.

CONCLUSIONS

Our deep learning-based approach was highly sensitive and specific in separating normal from keratoconic eyes using dynamic corneal deformation videos at levels that may prove useful in clinical practice.

FINANCIAL DISCLOSURES

Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

摘要

目的

评估卷积神经网络(CNN)在基于单张Scheimpflug的动态角膜变形视频中自动检测圆锥角膜(KC)的性能。

设计

回顾性队列研究。

参与者

我们回顾性分析了包含734名非连续的屈光手术候选者以及单侧或双侧KC患者记录的数据集。

方法

我们首先开发了一个视频预处理流程,将动态角膜变形视频转换为三维伪图像表示,然后训练一个CNN以直接从伪图像中识别KC。我们计算了模型的KC概率得分临界值,并使用两个独立数据集通过主观和客观准确性指标评估性能。

主要观察指标

受试者操作特征曲线下面积(AUC)、准确性、特异性、敏感性和KC概率得分。

结果

测试子集上的模型准确性为0.89,AUC为0.94。基于外部验证数据集,CNN模型检测KC的AUC和准确性分别为0.93和0.88。

结论

我们基于深度学习的方法在使用动态角膜变形视频区分正常眼和圆锥角膜眼方面具有高度敏感性和特异性,其水平在临床实践中可能证明是有用的。

财务披露

在本文末尾的脚注和披露中可能会找到专有或商业披露信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1ad/10587634/c9f67c41e0ef/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验