Lee Chanjung, Choi Eun Hyoung, Han Youngju, Lee Yohan
Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea.
Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea.
Sci Rep. 2025 Aug 15;15(1):29910. doi: 10.1038/s41598-025-15508-5.
Under climate change and human's dominant influence, wildfires have been increasing in frequency and scale, highlighting the demand of effective wildfire prediction and response. While prior research often maps high-risk areas, a few studies predict wildfire occurrences at specific dates and locations. This study aims to develop a year-round daily wildfire prediction model using machine learning, targeting Gangwon State in the Republic of Korea, and examine major influencing factors. We integrate meteorological elements (e.g., temperature, humidity, precipitation), forest-related variables (e.g., coniferous forest ratio, forest growing stock volume), and socioeconomic indicators (e.g., agricultural and cemetery land ratios) to identify salient predictors. We compare multiple algorithms, including Logistic Regression, XGBoost, and Random Forest, and use SHAP (SHapley Additive exPlanations) to enhance interpretability. The Extra Tree model achieves the highest AUC (0.839), and Random Forest demonstrates the best recall (0.828). SHAP results confirm that meteorological factors-especially relative humidity, precipitation, and temperature-are crucial, with forest- and socioeconomic variables also showing consistent effects. Applying a machine learning-based approach to daily wildfire prediction, integrating climate, environmental, and anthropogenic factors nationwide, and refining the temporal and spatial resolution of input data helps to advance wildfire prevention and response strategies in practice.
在气候变化和人类的主导影响下,野火的发生频率和规模不断增加,凸显了有效野火预测和应对的需求。虽然先前的研究通常绘制高风险区域,但少数研究预测特定日期和地点的野火发生情况。本研究旨在利用机器学习开发一个针对大韩民国江原道的全年每日野火预测模型,并研究主要影响因素。我们整合了气象要素(如温度、湿度、降水量)、森林相关变量(如有针叶林比例、森林蓄积量)和社会经济指标(如农业用地和墓地用地比例),以确定显著的预测因子。我们比较了多种算法,包括逻辑回归、XGBoost和随机森林,并使用SHAP(SHapley加性解释)来提高可解释性。极端随机树模型的AUC最高(0.839),随机森林的召回率最佳((0.828)。SHAP结果证实,气象因素——尤其是相对湿度、降水量和温度——至关重要,森林和社会经济变量也显示出一致的影响。在日常野火预测中应用基于机器学习的方法,整合全国范围的气候、环境和人为因素,并细化输入数据的时间和空间分辨率,有助于在实践中推进野火预防和应对策略。