Suppr超能文献

高效的光纤尾纤式不可区分单光子源。

Efficient fibre-pigtailed source of indistinguishable single photons.

作者信息

Margaria Nico, Pastier Florian, Bennour Thinhinane, Billard Marie, Ivanov Edouard, Hease William, Stepanov Petr, Adiyatullin Albert F, Singla Raksha, Pont Mathias, Descampeaux Maxime, Bernard Alice, Pishchagin Anton, Morassi Martina, Lemaître Aristide, Volz Thomas, Giesz Valérian, Somaschi Niccolo, Maring Nicolas, Boissier Sébastien, Au Thi Huong, Senellart Pascale

机构信息

Quandela SAS, Massy, France.

Centre de Nanosciences et de Nanotechnologies, Université Paris-Saclay, CNRS, Palaiseau, France.

出版信息

Nat Commun. 2025 Aug 14;16(1):7553. doi: 10.1038/s41467-025-62712-y.

Abstract

Semiconductor quantum dots in microcavities are an excellent platform for the efficient generation of indistinguishable single photons. However, their use in a wide range of quantum technologies requires their controlled fabrication and integration in compact closed-cycle cryocoolers, with a key challenge being the efficient and stable extraction of the single photons into a single-mode fibre. Here we report on a method for the fibre-pigtailing of deterministically fabricated single-photon sources. Our technique allows for nanometre-scale alignment accuracy between the source and a fibre, alignment that persists all the way from room temperature to 2.4 K. We demonstrate high performance of the device under near-resonant optical excitation with a photon indistinguishability of 97.5 % and a brightness at the output fibre of the system of 20.8 %. We show that the indistinguishability and single-photon rate are stable for over ten hours of continuous operation in a single cooldown. We further confirm that the device performance is not degraded by nine successive cooldown-warmup cycles.

摘要

微腔中的半导体量子点是高效产生不可区分单光子的理想平台。然而,要将它们应用于广泛的量子技术中,需要对其进行可控制造,并集成到紧凑的闭环低温冷却器中,其中一个关键挑战是将单光子高效且稳定地提取到单模光纤中。在此,我们报告一种用于确定性制造的单光子源光纤尾纤连接的方法。我们的技术可实现源与光纤之间纳米级的对准精度,这种对准在从室温到2.4 K的整个过程中都能保持。我们展示了该器件在近共振光激发下的高性能,光子不可区分性为97.5%,系统输出光纤处的亮度为20.8%。我们表明,在单次冷却过程中连续运行十多个小时,不可区分性和单光子速率保持稳定。我们进一步证实,经过九次连续的冷却 - 加热循环后,器件性能并未下降。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f8e/12354681/9b34ca1c9c31/41467_2025_62712_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验