Denic Aleksandar, Asghar Muhammad S, Stetzik Lucas, Reynolds Austin, Jagtap Jaidip M, Kumar Mahesh, Mullan Aidan F, Janowczyk Andrew R, Alexander Mariam P, Smith Maxwell L, Salem Fadi E, Barisoni Laura, Rule Andrew D
Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA.
Aiforia Inc, Cambridge Innovation Center, Cambridge, Massachusetts, USA.
Kidney Int Rep. 2025 May 29;10(8):2668-2679. doi: 10.1016/j.ekir.2025.05.035. eCollection 2025 Aug.
Chronic changes in kidney histology are often approximated by using human vision but with limited accuracy.
An interactive annotation tool trained an artificial intelligence (AI) model for segmenting structures on whole slide images (WSIs) of kidney tissue. A total of 20,509 annotations trained the AI model with 20 classes of structures, including separate detection of cortex from medulla. We compared the AI model detections with human-based annotations in an independent validation set. The AI model was then applied to 1426 donors and 1699 patients with renal tumor to calculate chronic changes as defined by measures of nephron size (glomerular volume, cortex volume per glomerulus, and mean tubular areas) and nephrosclerosis (globally sclerotic glomeruli, increased interstitium, increased tubular atrophy (TA), arteriolar hyalinosis (AH), and artery luminal stenosis from intimal thickening). We then assessed whether chronic kidney disease (CKD) outcomes were associated with these chronic changes.
During the AI model validation step, the agreement between the AI detections and human annotations was similar to the agreement between human pairs, except that the AI model showed less agreement with AH. Chronic changes calculated solely from AI-based detections associated with low glomerular filtration rate (GFR) during follow-up after kidney donation and with kidney failure after a radical nephrectomy for tumor. A chronicity score based on AI detections was calculated from cortex per glomerulus, percent glomerulosclerosis, TA foci density, and mean area of AH lesions and showed good prognostic discrimination for kidney failure (cross-validation C-statistic = 0.819).
A multiclass AI model can help automate quantification of chronic changes on WSIs of kidney histology.
肾脏组织学的慢性变化通常通过肉眼观察来估计,但准确性有限。
一种交互式注释工具训练了一个人工智能(AI)模型,用于在肾脏组织的全切片图像(WSIs)上分割结构。共有20509个注释用于训练具有20种结构类别的AI模型,包括从髓质中单独检测皮质。我们在一个独立的验证集中将AI模型的检测结果与基于人工的注释进行了比较。然后将AI模型应用于1426名供体和1699名肾肿瘤患者,以计算由肾单位大小(肾小球体积、每个肾小球的皮质体积和平均肾小管面积)和肾硬化(全球硬化性肾小球、间质增加、肾小管萎缩(TA)增加、小动脉玻璃样变性(AH)和内膜增厚导致的动脉管腔狭窄)测量所定义的慢性变化。然后我们评估慢性肾脏病(CKD)结局是否与这些慢性变化相关。
在AI模型验证步骤中,AI检测结果与人工注释之间的一致性与人工之间的一致性相似,只是AI模型与AH的一致性较低。仅基于AI检测计算的慢性变化与肾脏捐赠后随访期间的低肾小球滤过率(GFR)以及肿瘤根治性肾切除术后的肾衰竭相关。基于AI检测的慢性度评分由每个肾小球的皮质、肾小球硬化百分比、TA灶密度和AH病变的平均面积计算得出,对肾衰竭具有良好的预后判别能力(交叉验证C统计量 = 0.819)。
一个多类AI模型可以帮助自动量化肾脏组织学WSIs上的慢性变化。