下一代形态计量学在组织病理学病理组学数据挖掘中的应用。
Next-Generation Morphometry for pathomics-data mining in histopathology.
机构信息
Institute of Pathology, RWTH Aachen University Clinic, Aachen, Germany.
Institute for Computational Genomics, RWTH Aachen University Clinic, Aachen, Germany.
出版信息
Nat Commun. 2023 Jan 28;14(1):470. doi: 10.1038/s41467-023-36173-0.
Pathology diagnostics relies on the assessment of morphology by trained experts, which remains subjective and qualitative. Here we developed a framework for large-scale histomorphometry (FLASH) performing deep learning-based semantic segmentation and subsequent large-scale extraction of interpretable, quantitative, morphometric features in non-tumour kidney histology. We use two internal and three external, multi-centre cohorts to analyse over 1000 kidney biopsies and nephrectomies. By associating morphometric features with clinical parameters, we confirm previous concepts and reveal unexpected relations. We show that the extracted features are independent predictors of long-term clinical outcomes in IgA-nephropathy. We introduce single-structure morphometric analysis by applying techniques from single-cell transcriptomics, identifying distinct glomerular populations and morphometric phenotypes along a trajectory of disease progression. Our study provides a concept for Next-generation Morphometry (NGM), enabling comprehensive quantitative pathology data mining, i.e., pathomics.
病理学诊断依赖于经过培训的专家对形态的评估,这仍然是主观的和定性的。在这里,我们开发了一个用于大规模组织形态计量学(FLASH)的框架,该框架执行基于深度学习的语义分割,以及随后对非肿瘤性肾脏组织学中可解释的、定量的形态计量学特征进行大规模提取。我们使用两个内部和三个外部的多中心队列来分析超过 1000 例肾活检和肾切除术。通过将形态计量学特征与临床参数相关联,我们证实了以前的概念,并揭示了意想不到的关系。我们表明,提取的特征是 IgA 肾病长期临床结果的独立预测因子。我们通过应用单细胞转录组学技术来介绍单一结构形态计量学分析,从而在疾病进展的轨迹中识别出不同的肾小球群体和形态计量表型。我们的研究为下一代形态计量学(NGM)提供了一个概念,使全面的定量病理学数据挖掘,即病理组学成为可能。