Palmer Rebecca N, Abujudeh Sam, Stolarek-Januszkiewicz Magdalena, Silva Ana-Luisa, Mordaka Justyna M, von Bargen Kristine, Collazos Alejandra, Andreazza Simonetta, Potts Nicola D, Ho Chau Ha, Turner Iyelola, Jose Jinsy, Nugent Dilyara, Barot Prarthna, Xyrafaki Christina, Tomassini Alessandro, Evans Ryan T, Knudsen Katherine E, Gillon-Zhang Elizabeth, Brown Julia N, King Candace, Kiser Cory, Rossi Mary Beth, Gray Eleanor R, Osborne Robert J, Balmforth Barnaby W
Biofidelity Ltd, Cambridge, United Kingdom.
Biofidelity Inc, Morrisville, NC.
JCO Clin Cancer Inform. 2025 Aug;9:e2500050. doi: 10.1200/CCI-25-00050. Epub 2025 Aug 15.
Aspyre Lung is a targeted biomarker panel of 114 genomic variants across 11 guideline-recommended genes with simultaneous DNA and RNA for non-small cell lung cancer (NSCLC). In this study, we developed a machine learning algorithm to interpret fluorescence data outputs from Aspyre Lung, enabling the assay to be applied to both plasma and tissue samples.
Data for model training and testing were generated from over 13,500 DNA and RNA contrived samples, with variants spiked in at a variant allele frequency (VAF) of 0.1%-82% for DNA and 6-5,000 copies for RNA. The training and testing data sets used 67 reagent batches and 23 operators using nine quantitative polymerase chain reaction machines at two sites. Variant calling machine learning models were assessed in terms of median assay-wide 95% limit of detection (LoD95), observed sensitivity, false-positive rate per sample, per-variant LoD95, and per-variant observed sensitivity. The model was optimized by varying the training data subsets, features used, and model hyperparameters. Models were assessed against target specifications.
Verification with reference samples established experimental performance characteristics: a LoD95 of 0.19% VAF for SNV/indels, one amplifiable copy for gene fusions, 69 copies for exon 14 skipping events, and 100% specificity for all targets.
Implementation of the model for liquid biopsy sample analysis enables running of these samples alongside tissue in a single workflow with high sensitivity, specificity, and accuracy. These results demonstrate that the Aspyre Lung assay, powered by a robust machine learning algorithm, offers a reliable and scalable solution for molecular testing in NSCLC, enabling a diverse range of laboratories to confidently perform high-sensitivity, high-specificity testing on both tissue and liquid biopsy samples.
Aspyre Lung是一个针对非小细胞肺癌(NSCLC)的靶向生物标志物组合,涵盖11个指南推荐基因中的114个基因组变异,同时检测DNA和RNA。在本研究中,我们开发了一种机器学习算法来解读Aspyre Lung的荧光数据输出,使该检测方法能够应用于血浆和组织样本。
模型训练和测试数据来自超过13500个DNA和RNA人工合成样本,DNA变异的掺入变异等位基因频率(VAF)为0.1%-82%,RNA变异的掺入量为6-5000拷贝。训练和测试数据集使用了67个试剂批次和23名操作人员,在两个地点使用9台定量聚合酶链反应机器。通过中位检测范围内95%检测限(LoD95)、观察到的灵敏度、每个样本的假阳性率、每个变异的LoD95以及每个变异观察到的灵敏度来评估变异检测机器学习模型。通过改变训练数据子集、使用的特征和模型超参数对模型进行优化。根据目标规格对模型进行评估。
用参考样本进行验证确定了实验性能特征:SNV/插入缺失的LoD95为0.19% VAF,基因融合为一个可扩增拷贝,外显子14跳跃事件为69拷贝,所有靶点的特异性为100%。
该模型用于液体活检样本分析的实施,使得这些样本能够与组织样本在单一工作流程中同时进行检测,具有高灵敏度、特异性和准确性。这些结果表明,由强大的机器学习算法驱动的Aspyre Lung检测方法为NSCLC的分子检测提供了一种可靠且可扩展的解决方案,使各种实验室能够自信地对组织和液体活检样本进行高灵敏度、高特异性检测。