Suppr超能文献

使用集成学习方法从急诊头部CT扫描中检测自发性颅内出血的高灵敏度。

High sensitivity in spontaneous intracranial hemorrhage detection from emergency head CT scans using ensemble-learning approach.

作者信息

Takala Juuso, Peura Heikki, Pirinen Riku, Väätäinen Katri, Terjajev Sergei, Lin Ziyuan, Raj Rahul, Korja Miikka

机构信息

Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, P.O. Box 266, Helsinki, 00029, Finland.

Diagnostic Center, Helsinki University Hospital, P.O. Box 266, Helsinki, 00029, Finland.

出版信息

Sci Rep. 2025 Aug 15;15(1):29919. doi: 10.1038/s41598-025-15835-7.

Abstract

Spontaneous intracranial hemorrhages have a high disease burden. Due to increasing medical imaging, new technological solutions for assisting in image interpretation are warranted. We developed a deep learning (DL) solution for spontaneous intracranial hemorrhage detection from head CT scans. The DL solution included four base convolutional neural networks (CNNs), which were trained using 300 head CT scans. A metamodel was trained on top of the four base CNNs, and simple post processing steps were applied to improve the solution's accuracy. The solution performance was evaluated using a retrospective dataset of consecutive emergency head CTs imaged in ten different emergency rooms. 7797 head CT scans were included in the validation dataset and 118 CT scans presented with spontaneous intracranial hemorrhage. The trained metamodel together with a simple rule-based post-processing step showed 89.8% sensitivity and 89.5% specificity for hemorrhage detection at the case-level. The solution detected all 78 spontaneous hemorrhage cases imaged presumably or confirmedly within 12 h from the symptom onset and identified five hemorrhages missed in the initial on-call reports. Although the success of DL algorithms depends on multiple factors, including training data versatility and quality of annotations, using the proposed ensemble-learning approach and rule-based post-processing may help clinicians to develop highly accurate DL solutions for clinical imaging diagnostics.

摘要

自发性颅内出血的疾病负担很高。由于医学成像技术的不断发展,需要新的技术解决方案来辅助图像解读。我们开发了一种用于从头部CT扫描中检测自发性颅内出血的深度学习(DL)解决方案。该DL解决方案包括四个基础卷积神经网络(CNN),使用300例头部CT扫描进行训练。在这四个基础CNN之上训练了一个元模型,并应用了简单的后处理步骤来提高解决方案的准确性。使用在十个不同急诊室连续进行的急诊头部CT回顾性数据集对该解决方案的性能进行评估。验证数据集中包括7797例头部CT扫描,其中118例显示有自发性颅内出血。经过训练的元模型与简单的基于规则的后处理步骤相结合,在病例层面上对出血检测的灵敏度为89.8%,特异性为89.5%。该解决方案检测出了所有78例在症状发作后12小时内疑似或确诊成像的自发性出血病例,并识别出了最初值班报告中遗漏的5例出血。尽管DL算法的成功取决于多个因素,包括训练数据的通用性和注释质量,但使用所提出的集成学习方法和基于规则的后处理可能有助于临床医生开发用于临床影像诊断的高精度DL解决方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验