Gao Fuguo, He Yao, Xue Qingliang, Chen Jian, Hou Yan, Wang Xinxin, Wang Yifeng, Li Ruiqi, Liu Wei, Gao Yongheng, Jin Faguang
Department of Pulmonary and Critical Care Medicine, Tangdu hospital, Air Force Medical University, Xi'an 710038, China; Department of Pulmonary and Critical Care Medicine, The 940th Hospital of the Joint Logistics Support Force of PLA, Lanzhou 730050, China.
Department of Pulmonary and Critical Care Medicine, Tangdu hospital, Air Force Medical University, Xi'an 710038, China.
J Hazard Mater. 2025 Sep 15;496:139508. doi: 10.1016/j.jhazmat.2025.139508. Epub 2025 Aug 9.
Exposure to fine particulate matter (PM) has been closely correlated with cardiovascular morbidity and mortality. The present study elucidates the mechanism by which PM induces vascular endothelial injury and accelerates atherosclerosis through alveolar macrophage-derived extracellular vesicles (AMs-EVs). Utilizing ApoE mice and in vitro models, it was demonstrated that PM exposure provokes pulmonary inflammation and M1 macrophage polarization, thereby augmenting the release of AMs-EVs. These EVs traverse the alveolar-capillary barrier into the systemic circulation and are internalized by vascular endothelial cells, thereby aggravating aortic plaque formation and endothelial dysfunction. Mechanistically, PM-EVs downregulate the expression of ferritin heavy chain 1 (FTH1) in endothelial cells by delivering miR-3529-3p, a microRNA enriched in PM-EVs. This suppression disrupts iron homeostasis, culminating in iron overload, lipid peroxidation, and mitochondrial damage-hallmarks of ferroptosis. Inhibition of EV release (via GW4869) or ferroptosis (via ferrostatin-1) significantly mitigated PM-induced endothelial injury. Additionally, dual-luciferase reporter assays verified that miR-3529-3p directly targets the 3'-UTR of FTH1 mRNA, thereby establishing a causal link between the miR-3529-3p/FTH1 axis and ferroptosis-driven atherosclerosis. The findings reveal a novel intercellular communication mechanism through which PM primes macrophages to release EVs carrying miR-3529-3p, thereby promoting endothelial ferroptosis and the progression of atherosclerosis. This study offers critical insights into the involvement of EVs in pollutant-related cardiovascular pathogenesis and identifies FTH1 as a promising therapeutic target.
暴露于细颗粒物(PM)与心血管疾病的发病率和死亡率密切相关。本研究阐明了PM通过肺泡巨噬细胞衍生的细胞外囊泡(AMs-EVs)诱导血管内皮损伤并加速动脉粥样硬化的机制。利用载脂蛋白E基因敲除(ApoE)小鼠和体外模型,研究表明PM暴露会引发肺部炎症和M1巨噬细胞极化,从而增加AMs-EVs的释放。这些细胞外囊泡穿过肺泡-毛细血管屏障进入体循环,并被血管内皮细胞内化,从而加剧主动脉斑块形成和内皮功能障碍。从机制上讲,PM-EVs通过传递富含于PM-EVs中的微小RNA miR-3529-3p来下调内皮细胞中铁蛋白重链1(FTH1)的表达。这种抑制作用破坏了铁稳态,最终导致铁过载、脂质过氧化和线粒体损伤,这些都是铁死亡的特征。抑制细胞外囊泡释放(通过GW4869)或铁死亡(通过铁抑素-1)可显著减轻PM诱导的内皮损伤。此外,双荧光素酶报告基因检测证实miR-3529-3p直接靶向FTH1 mRNA的3'-非翻译区(3'-UTR),从而在miR-3529-3p/FTH1轴与铁死亡驱动的动脉粥样硬化之间建立了因果联系。这些发现揭示了一种新的细胞间通讯机制,通过该机制PM促使巨噬细胞释放携带miR-3529-3p的细胞外囊泡,从而促进内皮铁死亡和动脉粥样硬化的进展。本研究为细胞外囊泡参与污染物相关的心血管发病机制提供了重要见解,并将FTH1确定为一个有前景的治疗靶点。