使用递归神经网络和高伽马波段特征,可以从岛叶皮质的立体定向脑电图信号中对定向手部运动进行分类。
Directional hand movement can be classified from insular cortex SEEG signals using recurrent neural networks and high-gamma band features.
作者信息
Shao Xiecheng, Chung Ryan S, Cavaleri Jonathon M, Del Campo-Vera Roberto Martin, Parra Miguel, Sundaram Shivani, Zhang Selena, Surabhi Ashwitha, McGinn Ryan J, Liu Charles Y, Kellis Spencer S, Lee Brian
机构信息
Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, 1200 N State Street, Suite 3300, Los Angeles, 90033, CA, USA.
Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA.
出版信息
Sci Rep. 2025 Aug 16;15(1):29993. doi: 10.1038/s41598-025-14805-3.
Motor BCIs, with the help of Artificial Intelligence (AI) and machine learning, have shown promise in decoding neural signals for restoring motor function. Structures beyond motor cortex have provided additional sources for movement signals. New evidence points to the role of the insula in motor control, specifically directional hand-movements. In this study, we applied AI and machine learning techniques to decode directional hand-movements from high-gamma band (70-200 Hz) activity in the insular cortex. Seven participants with medication-resistant epilepsy underwent stereo electroencephalographic (SEEG) implantation of depth electrodes for seizure monitoring in the insula. SEEG data were sampled throughout a cued motor task involving three conditions: left-hand movement, right-hand movement, or no movement. Neural signal processing focused on high-gamma band activity. Demixed Principal Component Analysis (dPCA) was used for dimension reduction (d = 10) and feature extraction from the time-frequency analysis. For movement classification, we implemented a bidirectional Long Short-Term Memory (LSTM) architecture with a single layer, utilizing the capacity to process temporal sequences in forward and back directions for optimal decoding of movement direction. Our findings revealed robust directional-specific high-gamma modulation within the insular cortex during motor execution. Temporal decomposition through dPCA demonstrated distinct spatiotemporal patterns of high-gamma activity across movement conditions. Subsequently, LSTM networks successfully decoded these condition-specific neural signatures, achieving a classification accuracy of 72.6% ± 13.0% (mean ± SD), which significantly exceeded chance-level performance of 33.3% (p < 0.0001, n = 16 sessions). Furthermore, we identified a strong negative correlation between temporal distance of training-testing sessions and decoding performance (r = -0.868, p < 0.0001), indicating temporal difference of the neural representations. Our study highlights the potential role of deep brain structures, such as the insula, in conditional movement discrimination. We demonstrate that LSTM networks and high-gamma band analysis can advance the understanding of neural mechanisms underlying movement. These insights may pave the way for improvements in SEEG-based BCI.
运动脑机接口在人工智能(AI)和机器学习的帮助下,已展现出通过解码神经信号来恢复运动功能的潜力。运动皮层以外的结构为运动信号提供了额外来源。新证据表明脑岛在运动控制中发挥作用,特别是在手部定向运动方面。在本研究中,我们应用AI和机器学习技术,从脑岛皮层的高伽马波段(70 - 200赫兹)活动中解码手部定向运动。七名耐药性癫痫患者接受了立体脑电图(SEEG)深度电极植入,用于在脑岛进行癫痫监测。在一个涉及三种情况的提示运动任务中对SEEG数据进行采样:左手运动、右手运动或不运动。神经信号处理聚焦于高伽马波段活动。去混合主成分分析(dPCA)用于降维(d = 10)以及从时频分析中提取特征。对于运动分类,我们实现了具有单层的双向长短期记忆(LSTM)架构,利用其处理正向和反向时间序列的能力来优化运动方向解码。我们的研究结果揭示了在运动执行过程中,脑岛皮层内存在强大的方向特异性高伽马调制。通过dPCA进行的时间分解展示了不同运动条件下高伽马活动的独特时空模式。随后,LSTM网络成功解码了这些特定条件的神经特征,分类准确率达到72.6% ± 13.0%(平均值 ± 标准差),显著超过了33.3%的机遇水平表现(p < 0.0001,n = 16次实验)。此外,我们发现训练 - 测试实验的时间间隔与解码性能之间存在强烈的负相关(r = -0.868,p < 0.0001),表明神经表征存在时间差异。我们的研究强调了诸如脑岛等深部脑结构在条件性运动辨别中的潜在作用。我们证明LSTM网络和高伽马波段分析可以推进对运动背后神经机制的理解。这些见解可能为基于SEEG的脑机接口的改进铺平道路。
相似文献
Front Hum Neurosci. 2025-7-16
2025-1
J Neural Eng. 2024-7-15
本文引用的文献
J Clin Neurosci. 2025-5
J Neural Eng. 2024-8-29
Comput Biol Med. 2023-10
Nat Neurosci. 2023-7
Cogn Neurodyn. 2023-4
J Neural Eng. 2022-9-23