Wang Luyao, Wang Chenhan, Li Chenyang, Murai Toshiya, Bai Yicai, Song Ziyan, Zhang Shuoyan, Zhang Qi, Huang Yu, Bi Xiaoying, Jiang Jiehui
Institute of Biomedical Engineering, School of Life Sciences, Shanghai University, Shanghai, China.
Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
NPJ Digit Med. 2025 Aug 16;8(1):523. doi: 10.1038/s41746-025-01933-3.
Depression is a prevalent and costly mental disorder across all ages. Artificial intelligence (AI)-assisted physiological and behavioral information-such as electroencephalography (EEG), eye movement, video or audio monitoring, and gait analysis-offers a promising tool for depression screening. We systematically reviewed the classification performance of these AI-assisted measures in depression screening. A comprehensive literature search was conducted in Google Scholar, Web of Science, and IEEE Xplore, with the search date up to June 7, 2025. The reported AUC values are pooled estimates calculated from all results of eligible studies. AI-assisted multi-modal methods achieved a pooled AUC of 0.95 (95% CI: 0.92-0.96), outperforming uni-modal methods (pooled AUC: 0.84-0.92). Subgroup analysis indicated deep learning models showed higher performance, with an AUC of 0.95 (95% CI: 0.93-0.97). These findings highlight the potential of AI-based multi-modal information in depression screening and emphasize the need to establish standardized databases and improve research design.
抑郁症是一种在所有年龄段都普遍存在且代价高昂的精神障碍。人工智能(AI)辅助的生理和行为信息,如脑电图(EEG)、眼动、视频或音频监测以及步态分析,为抑郁症筛查提供了一种有前景的工具。我们系统地回顾了这些AI辅助措施在抑郁症筛查中的分类性能。在谷歌学术、科学网和IEEE Xplore中进行了全面的文献检索,检索日期截至2025年6月7日。报告的AUC值是根据符合条件的研究的所有结果计算得出的汇总估计值。AI辅助的多模态方法的汇总AUC为0.95(95%CI:0.92 - 0.96),优于单模态方法(汇总AUC:0.84 - 0.92)。亚组分析表明深度学习模型表现出更高的性能,AUC为0.95(95%CI:0.93 - 0.97)。这些发现突出了基于AI的多模态信息在抑郁症筛查中的潜力,并强调了建立标准化数据库和改进研究设计的必要性。
Cochrane Database Syst Rev. 2024-10-17
J Med Internet Res. 2025-6-23
J Med Internet Res. 2024-1-31
NPJ Digit Med. 2024-8-7
NPJ Digit Med. 2024-5-2
Comput Biol Med. 2023-10
IEEE Trans Biomed Circuits Syst. 2023-12
IEEE/ACM Trans Comput Biol Bioinform. 2023