文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能辅助多模态信息用于抑郁症筛查:一项系统综述和荟萃分析。

AI-assisted multi-modal information for the screening of depression: a systematic review and meta-analysis.

作者信息

Wang Luyao, Wang Chenhan, Li Chenyang, Murai Toshiya, Bai Yicai, Song Ziyan, Zhang Shuoyan, Zhang Qi, Huang Yu, Bi Xiaoying, Jiang Jiehui

机构信息

Institute of Biomedical Engineering, School of Life Sciences, Shanghai University, Shanghai, China.

Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan.

出版信息

NPJ Digit Med. 2025 Aug 16;8(1):523. doi: 10.1038/s41746-025-01933-3.


DOI:10.1038/s41746-025-01933-3
PMID:40819119
Abstract

Depression is a prevalent and costly mental disorder across all ages. Artificial intelligence (AI)-assisted physiological and behavioral information-such as electroencephalography (EEG), eye movement, video or audio monitoring, and gait analysis-offers a promising tool for depression screening. We systematically reviewed the classification performance of these AI-assisted measures in depression screening. A comprehensive literature search was conducted in Google Scholar, Web of Science, and IEEE Xplore, with the search date up to June 7, 2025. The reported AUC values are pooled estimates calculated from all results of eligible studies. AI-assisted multi-modal methods achieved a pooled AUC of 0.95 (95% CI: 0.92-0.96), outperforming uni-modal methods (pooled AUC: 0.84-0.92). Subgroup analysis indicated deep learning models showed higher performance, with an AUC of 0.95 (95% CI: 0.93-0.97). These findings highlight the potential of AI-based multi-modal information in depression screening and emphasize the need to establish standardized databases and improve research design.

摘要

抑郁症是一种在所有年龄段都普遍存在且代价高昂的精神障碍。人工智能(AI)辅助的生理和行为信息,如脑电图(EEG)、眼动、视频或音频监测以及步态分析,为抑郁症筛查提供了一种有前景的工具。我们系统地回顾了这些AI辅助措施在抑郁症筛查中的分类性能。在谷歌学术、科学网和IEEE Xplore中进行了全面的文献检索,检索日期截至2025年6月7日。报告的AUC值是根据符合条件的研究的所有结果计算得出的汇总估计值。AI辅助的多模态方法的汇总AUC为0.95(95%CI:0.92 - 0.96),优于单模态方法(汇总AUC:0.84 - 0.92)。亚组分析表明深度学习模型表现出更高的性能,AUC为0.95(95%CI:0.93 - 0.97)。这些发现突出了基于AI的多模态信息在抑郁症筛查中的潜力,并强调了建立标准化数据库和改进研究设计的必要性。

相似文献

[1]
AI-assisted multi-modal information for the screening of depression: a systematic review and meta-analysis.

NPJ Digit Med. 2025-8-16

[2]
Artificial intelligence for diagnosing exudative age-related macular degeneration.

Cochrane Database Syst Rev. 2024-10-17

[3]
Are Artificial Intelligence Models Reliable for Clinical Application in Pediatric Fracture Detection on Radiographs? A Systematic Review and Meta-analysis.

Clin Orthop Relat Res. 2025-8-20

[4]
AI in Medical Questionnaires: Innovations, Diagnosis, and Implications.

J Med Internet Res. 2025-6-23

[5]
Self-Administered Interventions Based on Natural Language Processing Models for Reducing Depressive and Anxiety Symptoms: Systematic Review and Meta-Analysis.

JMIR Ment Health. 2024-8-21

[6]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[7]
The Performance of Wearable AI in Detecting Stress Among Students: Systematic Review and Meta-Analysis.

J Med Internet Res. 2024-1-31

[8]
Evaluating Predictive Performance and Generalizability of Traditional and Artificial Intelligence Models in Predicting Surgical Site Infections Post-Spinal Surgery: A Systematic Review.

Spine J. 2025-7-14

[9]
Efficacy of shear wave elastography in measuring placental stiffness for pre-eclampsia screening and diagnosis: A systematic review and meta-analysis.

Int J Gynaecol Obstet. 2025-6-23

[10]
Artificial intelligence in predicting EGFR mutations from whole slide images in lung Cancer: A systematic review and Meta-Analysis.

Lung Cancer. 2025-6

本文引用的文献

[1]
Comparative Efficacy of MultiModal AI Methods in Screening for Major Depressive Disorder: Machine Learning Model Development Predictive Pilot Study.

JMIR Form Res. 2025-5-30

[2]
Evaluating multimodal AI in medical diagnostics.

NPJ Digit Med. 2024-8-7

[3]
Robust language-based mental health assessments in time and space through social media.

NPJ Digit Med. 2024-5-2

[4]
Enhancing multimodal depression diagnosis through representation learning and knowledge transfer.

Heliyon. 2024-2-10

[5]
Detecting depression based on facial cues elicited by emotional stimuli in video.

Comput Biol Med. 2023-10

[6]
The Three-Lead EEG Sensor: Introducing an EEG-Assisted Depression Diagnosis System Based on Ant Lion Optimization.

IEEE Trans Biomed Circuits Syst. 2023-12

[7]
Attention guided learnable time-domain filterbanks for speech depression detection.

Neural Netw. 2023-8

[8]
Orbitofrontal cortex-hippocampus potentiation mediates relief for depression: A randomized double-blind trial and TMS-EEG study.

Cell Rep Med. 2023-6-20

[9]
Systematic review and meta-analysis of performance of wearable artificial intelligence in detecting and predicting depression.

NPJ Digit Med. 2023-5-5

[10]
High-Density Electroencephalography and Speech Signal Based Deep Framework for Clinical Depression Diagnosis.

IEEE/ACM Trans Comput Biol Bioinform. 2023

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索