Suppr超能文献

考虑酯化过程的电磁微极尘埃流体流动中熵产生的计算分析。

Computational analysis of entropy generation in EMHD micropolar dusty fluid flow incorporating esterification process.

作者信息

Awan Aziz Ullah, Hussain Muzammil, Ali Bagh, Ahammad N Ameer, Gamaoun Fehmi, Kafle Jeevan, Nadeem Sohail

机构信息

Institute of Mathematics, University of the Punjab, Lahore, 54590, Pakistan.

Center for Theoretical Physics, Khazar University, 41 Mehseti Str., Baku, AZ1096, Azerbaijan.

出版信息

Sci Rep. 2025 Aug 17;15(1):30146. doi: 10.1038/s41598-025-15017-5.

Abstract

This article investigates the steady, two-dimensional electro-magneto-hydrodynamic (EMHD) flow of a micropolar dusty fluid across a linearly stretched surface, subjected to electroosmotic forces, buoyancy-driven convection, and both reversible and irreversible chemical reactions. Electrokinetic effects are modeled using the modified Helmholtz-Smoluchowski formulation. At the same time, micropolar fluid theory accounts for microstructural characteristics. The two-phase framework couples momentum, heat, and mass transport with viscous dissipation and entropy generation. The governing partial differential equations are transformed into a system of ordinary differential equations using similarity transformations and subsequently solved through the shooting method and the Runge-Kutta-Fehlberg (RKF45) technique. The model is validated against established results in limiting scenarios. Parametric analysis reveals how the electroosmotic parameter, magnetic and electric fields, and micropolar coupling govern flow behavior, entropy generation, Bejan number, skin friction, and heat transfer. Results reveal that magnetic and micropolar parameters significantly enhance entropy generation and modulate the Bejan number. Elevated electroosmotic and electric parameters promote flow acceleration, boundary-layer thinning, and suppress both microrotation and thermal gradients. This comprehensive model provides new insights into complex multiphase EMHD transport phenomena and holds potential for optimization in applications such as targeted drug delivery, thermal control in EMHD-based energy systems, and electrokinetic microfluidics.

摘要

本文研究了微极尘埃流体在电渗力、浮力驱动对流以及可逆和不可逆化学反应作用下,沿线性拉伸表面的稳态二维电磁流体动力学(EMHD)流动。采用修正的亥姆霍兹-斯莫卢霍夫斯基公式对电动效应进行建模。同时,微极流体理论考虑了微观结构特征。两相框架将动量、热量和质量传输与粘性耗散和熵产生耦合在一起。通过相似变换将控制偏微分方程转化为常微分方程组,随后采用打靶法和龙格-库塔-费尔贝格(RKF45)技术进行求解。该模型在极限情况下与已有的结果进行了验证。参数分析揭示了电渗参数、磁场和电场以及微极耦合如何控制流动行为、熵产生、贝扬数、表面摩擦和传热。结果表明,磁场和微极参数显著增强了熵产生并调节了贝扬数。较高的电渗和电参数促进了流动加速、边界层变薄,并抑制了微旋转和热梯度。这个综合模型为复杂的多相EMHD传输现象提供了新的见解,并在靶向药物递送、基于EMHD的能量系统中的热控制以及电动微流体等应用的优化方面具有潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b419/12358580/15e372e861df/41598_2025_15017_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验