Johari Maryam, Hoshyar Hossein Ali, Dabirian Esmail, Ganji Davood Domiri
Department of Oral and Maxillofacial Radiology, Babol University of Medical Sciences, Babol, Iran.
Department of Mechanical Engineering, Technical and Vocational, University of Emam Sadegh, Babol, Iran.
Sci Rep. 2025 Jul 2;15(1):22820. doi: 10.1038/s41598-025-04011-6.
This research explores the utilization of magnetohydrodynamic nanofluids to enhance thermal control in high-energy systems, such as X-ray devices, where efficient heat dissipation is essential for optimal performance and lifespan. By integrating analytical and numerical approaches, the study examines heat transfer in nanofluids confined between parallel plates, incorporating thermal radiation and the Cattaneo-Christov heat flux model. This model offers a more precise representation of heat transfer compared to traditional Fourier's law, especially in scenarios involving rapid thermal fluctuations typical in X-ray equipment. The investigation employs similarity transformations to simplify the governing equations continuity, momentum, and energy transforming them into ordinary differential equations. These equations are then solved using the Homotopy Perturbation Method and the fourth-order Runge-Kutta technique. The study assesses the influence of various parameters, including magnetic field intensity, squeeze number, nanoparticle concentration, heat source, thermal relaxation, and radiation, on velocity and temperature profiles. The findings reveal that the Cattaneo-Christov model predicts lower temperature distributions compared to Fourier's law, which is crucial for accurate thermal management in X-ray systems. Increasing the magnetic field strength results in reduced velocity and temperature due to the Lorentz force. Notably, the inclusion of nanoparticles significantly enhances heat transfer, making nanofluids a promising solution for cooling high-energy systems in radiology and X-ray machines.
本研究探索了磁流体动力学纳米流体在高能系统(如X射线设备)中的热控制应用,在这些系统中,高效散热对于最佳性能和使用寿命至关重要。通过结合分析和数值方法,该研究考察了平行板间纳米流体中的热传递,纳入了热辐射和卡塔尼奥-克里斯托夫热流模型。与传统的傅里叶定律相比,该模型能更精确地描述热传递,特别是在涉及X射线设备中典型的快速热波动的情况下。该研究采用相似变换简化控制方程(连续性、动量和能量方程),将其转化为常微分方程。然后使用同伦摄动法和四阶龙格-库塔技术求解这些方程。该研究评估了各种参数(包括磁场强度、挤压数、纳米颗粒浓度、热源、热弛豫和辐射)对速度和温度分布的影响。研究结果表明,与傅里叶定律相比,卡塔尼奥-克里斯托夫模型预测的温度分布更低,这对于X射线系统中精确的热管理至关重要。由于洛伦兹力,增加磁场强度会导致速度和温度降低。值得注意的是,纳米颗粒的加入显著增强了热传递,使纳米流体成为用于冷却放射学和X射线机中高能系统的一种有前景的解决方案。