Jain Viraj V, Tully Georgia Grace, Jarvis Peter W, Jarvis Emily A A
Loyola Marymount University, Department of Chemistry and Biochemistry, 1 LMU Drive, Los Angeles, California 90045, United States.
ACS Omega. 2025 Aug 1;10(31):34308-34320. doi: 10.1021/acsomega.5c01652. eCollection 2025 Aug 12.
Acenes are a class of polycyclic aromatic hydrocarbons that may hold promise as organic semiconductors (OSCs) in solar cells and electronic devices. Their instability and poor solubility present challenges that may be improved by replacing the hydrogens with phenyl, halogen or alkyl substituents to sterically induce a helical twist to these otherwise planar molecules. This twisted structure also impacts the optical properties of these molecules. We employ time-dependent density functional theory (TD DFT) to investigate acenes spanning from naphthalene to heptacene. We focus on the structural and electronic effects of fully substituting these molecular backbones to create seven distinct substituent series, many of which have been previously synthesized. The end-to-end intramolecular twist increases linearly with acene length for all series, however the degree of twist varies significantly depending on the specific substituent. All series display similar trends of increasing red shifts in the estimated highest occupied molecular orbital-lowest-unoccupied molecular orbital (HOMO-LUMO), fundamental, and optical gaps as the number of fused rings along the polycyclic backbone increases. Despite the similarity of measured gaps, features distinguishing the series from one another are more apparent in their near ultraviolet-visible-near infrared (UV-vis-NIR) absorption spectra. Furthermore, halogen and alkyl substituents display local minima for two other structural configurations in addition to the twisted structure. Gibbs free energy calculations show these three distinct configurations are likely energetically competitive at room temperature. One novel nonhelical geometry shows significant reductions in excitation energies, while the other displays similar values to the twisted acene structures. The structural and electronic trends of these series offer insights that can guide the use of these and similar acenes as functional materials.
并苯是一类多环芳烃,有望作为太阳能电池和电子设备中的有机半导体(OSC)。它们的不稳定性和低溶解性带来了挑战,通过用苯基、卤素或烷基取代基取代氢原子以空间诱导这些原本平面的分子发生螺旋扭曲,可能会改善这些问题。这种扭曲结构也会影响这些分子的光学性质。我们采用含时密度泛函理论(TD DFT)来研究从萘到七并苯的并苯。我们关注完全取代这些分子主链以创建七个不同取代基系列的结构和电子效应,其中许多系列此前已被合成。对于所有系列,端到端的分子内扭曲随并苯长度线性增加,然而扭曲程度因具体取代基而异。随着多环主链上稠环数量的增加,所有系列在估计的最高占据分子轨道 - 最低未占据分子轨道(HOMO - LUMO)、基态和光学能隙方面都呈现出类似的红移增加趋势。尽管测量的能隙相似,但在近紫外 - 可见 - 近红外(UV - vis - NIR)吸收光谱中,区分这些系列的特征更为明显。此外,除了扭曲结构外,卤素和烷基取代基在另外两种结构构型中显示出局部最小值。吉布斯自由能计算表明,这三种不同构型在室温下可能在能量上具有竞争力。一种新颖的非螺旋几何结构显示出激发能显著降低,而另一种则与扭曲并苯结构的值相似。这些系列的结构和电子趋势提供了见解,可指导将这些及类似并苯用作功能材料。