Suppr超能文献

利用机器学习识别围产期女性负面情绪的动态演变模式:中国西南地区的一项纵向研究

Using Machine Learning to Identify the Dynamic Evolution Patterns of Negative Emotions in Perinatal Women: A Longitudinal Study in Southwest China.

作者信息

Zhang Yuan, Li Wenlong, Zou Jian, Yang Guohui, Zhong Xiaoni, Xie Biao

机构信息

Department of Epidemiology and Health Statistics School of Public Health, Chongqing Medical University Chongqing China.

Research Center for Medicine and Social Development Chongqing Medical University Chongqing China.

出版信息

MedComm (2020). 2025 Aug 15;6(8):e70331. doi: 10.1002/mco2.70331. eCollection 2025 Aug.

Abstract

Paying attention to the mental health of perinatal women is helpful in improving their quality of life. However, the existing research pays less attention to the heterogeneity of its negative emotional trajectory and the identification of high-risk groups. This study recruited 860 perinatal women from four large hospitals in Chongqing from March 2018 to January 2019. They were followed up by structured questionnaires in the first trimester, second trimester, third trimester, and about 6 weeks after delivery. The growth mixture model was used to analyze the developmental trajectory of negative emotions, and six machine learning algorithms were used to establish a high-risk negative emotion recognition model. The performance of the model was comprehensively evaluated by five performance indicators. The SHAP algorithm was used to explain the model. Negative emotional trajectories were divided into four categories: low-stable anxiety group, gradually increasing high-anxiety group, mild sustained depression group, and high-progressive depression group. The extreme gradient boosting model performed best, with the highest prediction performance score (24 points). In summary, the negative emotional trajectory of perinatal women is dynamic and heterogeneous, and the prediction model based on machine learning may play an important role in identifying high-risk negative emotions.

摘要

关注围产期女性的心理健康有助于提高她们的生活质量。然而,现有研究较少关注其负面情绪轨迹的异质性以及高危群体的识别。本研究于2018年3月至2019年1月从重庆四家大型医院招募了860名围产期女性。在孕早期、孕中期、孕晚期以及产后约6周通过结构化问卷对她们进行随访。采用增长混合模型分析负面情绪的发展轨迹,并使用六种机器学习算法建立高危负面情绪识别模型。通过五个性能指标对模型性能进行综合评估。使用SHAP算法对模型进行解释。负面情绪轨迹分为四类:低稳定性焦虑组、逐渐增加的高焦虑组、轻度持续性抑郁组和高进展性抑郁组。极端梯度提升模型表现最佳,预测性能得分最高(24分)。总之,围产期女性的负面情绪轨迹是动态且异质的,基于机器学习的预测模型可能在识别高危负面情绪方面发挥重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/835e/12356827/250b60315e08/MCO2-6-e70331-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验