Suppr超能文献

一项基于机器学习的自杀风险识别病例对照研究:整合压力条件下的声学和语言特征

A Machine Learning-Based Case-Control Study on Suicide Risk Identification: Integrating Acoustic and Linguistic Features Under Stress Conditions.

作者信息

Lin Qunxing, Zhang Jianqiang, Wang Weijie, Tan Chunxin, Wu Xiaohua, Zhao Jiubo

机构信息

Digital Mental Health and Risk Identification and Control Lab, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China.

Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, China.

出版信息

Depress Anxiety. 2025 Aug 8;2025:1671972. doi: 10.1155/da/1671972. eCollection 2025.

Abstract

Suicide is a significant global public health issue, with current risk assessment methods primarily relying on psychiatrists' clinical judgment and scale-based evaluations, which can be challenging to implement. Recently, interest has increased in using vocal and linguistic features to identify suicide risk. This study investigates speech-based methods for assessing suicide risk in two phases involving 90 patients with major depressive disorder (MDD) or bipolar disorder (BD). In Phase 1, three types of question-answer materials with different emotional valences (positive, neutral, and negative) were employed. The model combining acoustic and word frequency features from negative emotional valence materials achieved the highest accuracy at 77.82%. Phase 2 introduced stress factors, highlighting that speech data collected under stress better reflects participants' psychological states, providing more insights into suicide risk. These findings emphasize the potential of speech analysis in suicide prevention, while also calling for further research to validate and expand these results.

摘要

自杀是一个重大的全球公共卫生问题,目前的风险评估方法主要依赖精神科医生的临床判断和基于量表的评估,而这些方法实施起来可能具有挑战性。最近,利用语音和语言特征来识别自杀风险的兴趣有所增加。本研究分两个阶段调查了基于语音的自杀风险评估方法,涉及90名重度抑郁症(MDD)或双相情感障碍(BD)患者。在第一阶段,采用了三种具有不同情感效价(积极、中性和消极)的问答材料。结合来自消极情感效价材料的声学和词频特征的模型取得了最高准确率,为77.82%。第二阶段引入了压力因素,强调在压力下收集的语音数据能更好地反映参与者的心理状态,为自杀风险提供了更多见解。这些发现强调了语音分析在自杀预防中的潜力,同时也呼吁进一步研究以验证和扩展这些结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c3c/12356671/6e4e38809d40/DA2025-1671972.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验