Faurholt-Jepsen Maria, Rohani Darius Adam, Busk Jonas, Vinberg Maj, Bardram Jakob Eyvind, Kessing Lars Vedel
Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.
Department of Health Technology, Technical University of Denmark, Lyngby, Denmark.
Int J Bipolar Disord. 2021 Dec 1;9(1):38. doi: 10.1186/s40345-021-00243-3.
Voice features have been suggested as objective markers of bipolar disorder (BD).
To investigate whether voice features from naturalistic phone calls could discriminate between (1) BD, unaffected first-degree relatives (UR) and healthy control individuals (HC); (2) affective states within BD.
Voice features were collected daily during naturalistic phone calls for up to 972 days. A total of 121 patients with BD, 21 UR and 38 HC were included. A total of 107.033 voice data entries were collected [BD (n = 78.733), UR (n = 8004), and HC (n = 20.296)]. Daily, patients evaluated symptoms using a smartphone-based system. Affective states were defined according to these evaluations. Data were analyzed using random forest machine learning algorithms.
Compared to HC, BD was classified with a sensitivity of 0.79 (SD 0.11)/AUC = 0.76 (SD 0.11) and UR with a sensitivity of 0.53 (SD 0.21)/AUC of 0.72 (SD 0.12). Within BD, compared to euthymia, mania was classified with a specificity of 0.75 (SD 0.16)/AUC = 0.66 (SD 0.11). Compared to euthymia, depression was classified with a specificity of 0.70 (SD 0.16)/AUC = 0.66 (SD 0.12). In all models the user dependent models outperformed the user independent models. Models combining increased mood, increased activity and insomnia compared to periods without performed best with a specificity of 0.78 (SD 0.16)/AUC = 0.67 (SD 0.11).
Voice features from naturalistic phone calls may represent a supplementary objective marker discriminating BD from HC and a state marker within BD.
语音特征已被提议作为双相情感障碍(BD)的客观标志物。
研究来自自然通话的语音特征是否能够区分:(1)双相情感障碍患者、未患病的一级亲属(UR)和健康对照个体(HC);(2)双相情感障碍患者的情感状态。
在长达972天的自然通话过程中,每天收集语音特征。共纳入121例双相情感障碍患者、21例未患病的一级亲属和38例健康对照个体。总共收集了107033条语音数据记录[双相情感障碍患者(n = 78733)、未患病的一级亲属(n = 8004)和健康对照个体(n = 20296)]。患者每天使用基于智能手机的系统评估症状。根据这些评估来定义情感状态。使用随机森林机器学习算法对数据进行分析。
与健康对照个体相比,双相情感障碍患者的分类敏感度为0.79(标准差0.11)/曲线下面积(AUC)= 0.76(标准差0.11),未患病的一级亲属的分类敏感度为0.53(标准差0.21)/AUC为0.72(标准差0.12)。在双相情感障碍患者中,与心境正常相比,躁狂发作的分类特异度为0.75(标准差0.16)/AUC = 0.66(标准差0.11)。与心境正常相比,抑郁发作的分类特异度为0.70(标准差0.16)/AUC = 0.66(标准差0.12)。在所有模型中,依赖用户的模型优于独立于用户的模型。与无特定时期相比,将情绪高涨、活动增加和失眠等特征结合起来的模型表现最佳,特异度为0.78(标准差0.16)/AUC = 0.67(标准差0.11)。
来自自然通话的语音特征可能是区分双相情感障碍患者与健康对照个体的一种辅助客观标志物,也是双相情感障碍患者内部的一种状态标志物。