文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

嵌合抗原受体T细胞(CAR-T)疗法中的数学模型与计算方法。

Mathematical models and computational approaches in CAR-T therapeutics.

作者信息

Putignano Guido, Ruipérez-Campillo Samuel, Yuan Zhou, Millet José, Guerrero-Aspizua Sara

机构信息

bioERGOtech, Taranto, Italy.

Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.

出版信息

Front Immunol. 2025 Aug 1;16:1581210. doi: 10.3389/fimmu.2025.1581210. eCollection 2025.


DOI:10.3389/fimmu.2025.1581210
PMID:40821789
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12354594/
Abstract

BACKGROUND: The field of synthetic biology aims to engineer living organisms for specific therapeutic applications, with CAR-T cell therapy emerging as a groundbreaking approach in cancer treatment due to its potential for flexibility, specificity, predictability, and controllability. CAR-T cell therapies involve the genetic modification of T cells to target tumor-specific antigens. However, challenges persist because the limited spatio-temporal resolution in current models hinders the therapy's safety, cost-effectiveness, and overall potential, particularly for solid tumors. MAIN BODY: This manuscript explores how mathematical models and computational techniques can enhance CAR-T therapy design and predict therapeutic outcomes, focusing on critical factors such as antigen receptor functionality, treatment efficacy, and potential adverse effects. We examine CAR-T cell dynamics and the impact of antigen binding, addressing strategies to overcome antigen escape, cytokine release syndrome, and relapse. CONCLUSION: We propose a comprehensive framework for using these models to advance CAR-T cell therapy, bridging the gap between existing therapeutic methods and the full potential of CAR-T engineering and its clinical application.

摘要

背景:合成生物学领域旨在对活生物体进行工程改造以用于特定的治疗应用,嵌合抗原受体T细胞(CAR-T)疗法因其具有灵活性、特异性、可预测性和可控性的潜力,成为癌症治疗中的一种开创性方法。CAR-T细胞疗法涉及对T细胞进行基因改造以靶向肿瘤特异性抗原。然而,挑战依然存在,因为当前模型中有限的时空分辨率阻碍了该疗法的安全性、成本效益和整体潜力,尤其是对于实体瘤而言。 主体:本手稿探讨了数学模型和计算技术如何能够增强CAR-T疗法的设计并预测治疗结果,重点关注抗原受体功能、治疗效果和潜在不良反应等关键因素。我们研究了CAR-T细胞动力学以及抗原结合的影响,探讨了克服抗原逃逸、细胞因子释放综合征和复发的策略。 结论:我们提出了一个使用这些模型推进CAR-T细胞疗法的综合框架,弥合现有治疗方法与CAR-T工程及其临床应用的全部潜力之间的差距。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ace/12354594/46f6de0eb4e6/fimmu-16-1581210-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ace/12354594/518f63138aac/fimmu-16-1581210-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ace/12354594/477ad4e548b6/fimmu-16-1581210-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ace/12354594/a12439ba63f6/fimmu-16-1581210-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ace/12354594/939fc0b02c52/fimmu-16-1581210-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ace/12354594/37f280262046/fimmu-16-1581210-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ace/12354594/46f6de0eb4e6/fimmu-16-1581210-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ace/12354594/518f63138aac/fimmu-16-1581210-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ace/12354594/477ad4e548b6/fimmu-16-1581210-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ace/12354594/a12439ba63f6/fimmu-16-1581210-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ace/12354594/939fc0b02c52/fimmu-16-1581210-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ace/12354594/37f280262046/fimmu-16-1581210-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ace/12354594/46f6de0eb4e6/fimmu-16-1581210-g006.jpg

相似文献

[1]
Mathematical models and computational approaches in CAR-T therapeutics.

Front Immunol. 2025-8-1

[2]
Tracing the development of CAR-T cell design: from concept to next-generation platforms.

Front Immunol. 2025-7-17

[3]
CAR-T Cells Therapy in Glioblastoma: A Systematic Review on Molecular Targets and Treatment Strategies.

Int J Mol Sci. 2024-6-29

[4]
CAR T-cell immunotherapy as the next horizon in cancer eradication: current landscape, challenges, and future directions.

Med Oncol. 2025-8-6

[5]
Dual targeting of BCMA and SLAMF7 with the CARtein system: chimeric antigen receptors with intein-mediated splicing elicit specific T cell activation against multiple myeloma.

Front Immunol. 2025-7-31

[6]
From spheroids to organoids: next-generation models for CAR-T cell therapy research in solid tumors.

Front Immunol. 2025-7-11

[7]
From concept to cure: The evolution of CAR-T cell therapy.

Mol Ther. 2025-5-7

[8]
Smart CAR-T Nanosymbionts: archetypes and proto-models.

Front Immunol. 2025-8-12

[9]
Future perspectives on novel CAR-T therapeutics beyond CD19 and BCMA in onco-hematology.

Front Immunol. 2025-7-14

[10]
ReCARving the future: bridging CAR T-cell therapy gaps with synthetic biology, engineering, and economic insights.

Front Immunol. 2024

本文引用的文献

[1]
Current advances in experimental and computational approaches to enhance CAR T cell manufacturing protocols and improve clinical efficacy.

Front Mol Med. 2024-2-1

[2]
PRC2-AgeIndex as a universal biomarker of aging and rejuvenation.

Nat Commun. 2024-7-16

[3]
Digital biomarkers: 3PM approach revolutionizing chronic disease management - EPMA 2024 position.

EPMA J. 2024-5-11

[4]
In silico study of heterogeneous tumour-derived organoid response to CAR T-cell therapy.

Sci Rep. 2024-5-29

[5]
Making drugs from T cells: The quantitative pharmacology of engineered T cell therapeutics.

NPJ Syst Biol Appl. 2024-3-18

[6]
CancerGPT for few shot drug pair synergy prediction using large pretrained language models.

NPJ Digit Med. 2024-2-19

[7]
Validation of biomarkers of aging.

Nat Med. 2024-2

[8]
CAR-Toner: an AI-driven approach for CAR tonic signaling prediction and optimization.

Cell Res. 2024-5

[9]
New regulatory thinking is needed for AI-based personalised drug and cell therapies in precision oncology.

NPJ Precis Oncol. 2024-1-30

[10]
Mechanisms, pathways and strategies for rejuvenation through epigenetic reprogramming.

Nat Aging. 2024-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索