文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于预测炎症性肠病治疗反应和表征免疫失调的核心基因特征的多组学推导

Multi-omics derivation of a core gene signature for predicting therapeutic response and characterizing immune dysregulation in inflammatory bowel disease.

作者信息

Wang Mingming, Liang Liping, Tang Zibo, Han Jimin, Wu Lele, Liu Le, Chen Ye

机构信息

Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.

Department of Gastroenterology and Hepatology, Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.

出版信息

Front Immunol. 2025 Jul 31;16:1611598. doi: 10.3389/fimmu.2025.1611598. eCollection 2025.


DOI:10.3389/fimmu.2025.1611598
PMID:40821793
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12350116/
Abstract

BACKGROUND: Inflammatory bowel disease (IBD) presents unpredictable therapeutic responses and complex immune dysregulation. Current precision medicine approaches lack robust molecular tools integrating transcriptomic signatures with immune dynamics for personalized treatment guidance. METHODS: We performed multi-omics analyses of GEO datasets using machine learning algorithms (LASSO/Random Forest) to derive a four-gene signature. Validation employed ten algorithms and nomogram construction. Immune infiltration (CIBERSORT/ssGSEA), single-cell RNA sequencing, and DSS-colitis models characterized immune dynamics, cellular specificity, and therapeutic response modulation. RESULTS: We identified 536 differentially expressed genes significantly enriched in IL-17 signaling, TNF signaling, and cytokine-cytokine receptor interactions. WGCNA revealed six co-expression modules with disease-specific correlations: turquoise module strongly correlated with Crohn's disease (r=0.6, P=4×10) and purple module with ulcerative colitis (r=0.55, P=1×10). The four-gene signature (CDC14A, PDK2, CHAD, UGT2A3) demonstrated exceptional diagnostic performance across ten validation algorithms (AUC range: 0.86-0.97), with the integrated nomogram achieving superior accuracy (AUC=0.952) compared to individual genes (CDC14A: 0.934, PDK2: 0.913, CHAD: 0.893, UGT2A3: 0.797). Consensus clustering stratified patients into two distinct molecular subtypes: Cluster 1 exhibited elevated M1 macrophages, activated dendritic cells, and neutrophils with enhanced glycolysis and mTORC1 signaling, while Cluster 2 showed higher signature gene expression, enhanced oxidative phosphorylation, and enrichment in regulatory immune populations including Tregs and M2 macrophages. Single-cell RNA sequencing revealed cell-type-specific expression patterns: PDK2 demonstrated widespread expression across epithelial cycling cells and stem cells, UGT2A3 showed preferential epithelial localization, and CDC14A exhibited selective enrichment in innate lymphoid cells. Nomogram-based risk stratification effectively predicted biologic treatment responses across multiple therapeutic classes using four independent treatment datasets (GSE16879, GSE92415, GSE73661, GSE206285): low-risk patients demonstrated superior response rates to golimumab (63.3%), infliximab (54.8%), and vedolizumab (29% vs. 15% in high-risk group). Connectivity Map analysis identified MS.275 as the top therapeutic enhancer, with experimental validation in DSS-induced colitis confirming synergistic anti-inflammatory effects with TNF-α inhibitors, improving disease activity indices and restoring signature gene expression patterns. CONCLUSION: This mechanistically grounded four-gene signature enables precise IBD patient stratification across distinct immunological subtypes and predicts biologic responses, providing validated molecular tools for precision immunotherapy and personalized treatment optimization.

摘要

背景:炎症性肠病(IBD)呈现出不可预测的治疗反应和复杂的免疫失调。当前的精准医学方法缺乏强大的分子工具来整合转录组特征与免疫动态,以指导个性化治疗。 方法:我们使用机器学习算法(LASSO/随机森林)对GEO数据集进行多组学分析,以得出一个四基因特征。验证采用了十种算法和列线图构建。免疫浸润(CIBERSORT/ssGSEA)、单细胞RNA测序和葡聚糖硫酸钠(DSS)诱导的结肠炎模型表征了免疫动态、细胞特异性和治疗反应调节。 结果:我们鉴定出536个差异表达基因,这些基因在白细胞介素-17信号传导、肿瘤坏死因子信号传导和细胞因子-细胞因子受体相互作用中显著富集。加权基因共表达网络分析(WGCNA)揭示了六个与疾病特异性相关的共表达模块:绿松石模块与克罗恩病高度相关(r = 0.6,P = 4×10),紫色模块与溃疡性结肠炎高度相关(r = 0.55,P = 1×10)。四基因特征(细胞分裂周期蛋白14A(CDC14A)、丙酮酸脱氢酶激酶2(PDK2)、软骨黏蛋白(CHAD)、尿苷二磷酸葡萄糖醛酸基转移酶2A3(UGT2A3))在十种验证算法中均表现出卓越的诊断性能(曲线下面积(AUC)范围:0.86 - 0.97),与单个基因相比,整合列线图具有更高的准确性(AUC = 0.952)(CDC14A:0.934,PDK2:0.913,CHAD:0.893,UGT2A3:0.797)。一致性聚类将患者分为两种不同的分子亚型:簇1表现出M1巨噬细胞、活化树突状细胞和中性粒细胞升高,糖酵解和哺乳动物雷帕霉素靶蛋白复合物1(mTORC1)信号增强,而簇2显示出更高的特征基因表达、增强的氧化磷酸化以及在包括调节性T细胞(Tregs)和M2巨噬细胞在内的调节性免疫群体中的富集。单细胞RNA测序揭示了细胞类型特异性表达模式:PDK2在整个上皮循环细胞和干细胞中广泛表达,UGT2A3优先定位于上皮细胞,而CDC14A在先天淋巴细胞中选择性富集。基于列线图的风险分层使用四个独立的治疗数据集(GSE16879、GSE92415、GSE73661、GSE206285)有效地预测了多种治疗类型的生物治疗反应:低风险患者对戈利木单抗(63.3%)、英夫利昔单抗(54.8%)和维得利珠单抗(与高风险组的15%相比为29%)表现出更高的反应率。连通图分析确定MS.275为顶级治疗增强剂,在DSS诱导的结肠炎中的实验验证证实了其与肿瘤坏死因子-α(TNF-α)抑制剂的协同抗炎作用,改善了疾病活动指数并恢复了特征基因表达模式。 结论:这种基于机制的四基因特征能够对不同免疫亚型的IBD患者进行精确分层,并预测生物治疗反应,为精准免疫治疗和个性化治疗优化提供了经过验证的分子工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f17/12350116/56849daf5927/fimmu-16-1611598-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f17/12350116/0402ef3a4af9/fimmu-16-1611598-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f17/12350116/894205485b0f/fimmu-16-1611598-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f17/12350116/03914531d377/fimmu-16-1611598-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f17/12350116/78bcda86b7a7/fimmu-16-1611598-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f17/12350116/ec26156c4610/fimmu-16-1611598-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f17/12350116/a7876628a837/fimmu-16-1611598-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f17/12350116/a0307e930fa3/fimmu-16-1611598-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f17/12350116/36b3dea26ec0/fimmu-16-1611598-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f17/12350116/56849daf5927/fimmu-16-1611598-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f17/12350116/0402ef3a4af9/fimmu-16-1611598-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f17/12350116/894205485b0f/fimmu-16-1611598-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f17/12350116/03914531d377/fimmu-16-1611598-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f17/12350116/78bcda86b7a7/fimmu-16-1611598-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f17/12350116/ec26156c4610/fimmu-16-1611598-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f17/12350116/a7876628a837/fimmu-16-1611598-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f17/12350116/a0307e930fa3/fimmu-16-1611598-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f17/12350116/36b3dea26ec0/fimmu-16-1611598-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f17/12350116/56849daf5927/fimmu-16-1611598-g009.jpg

相似文献

[1]
Multi-omics derivation of a core gene signature for predicting therapeutic response and characterizing immune dysregulation in inflammatory bowel disease.

Front Immunol. 2025-7-31

[2]
Deciphering Shared Gene Signatures and Immune Infiltration Characteristics Between Gestational Diabetes Mellitus and Preeclampsia by Integrated Bioinformatics Analysis and Machine Learning.

Reprod Sci. 2025-5-15

[3]
Developing a Panel of Shared Susceptibility Genes as Diagnostic Biomarkers for chronic obstructive pulmonary disease and Heart Failure.

Comput Biol Med. 2025-9

[4]
Machine learning based screening of biomarkers associated with cell death and immunosuppression of multiple life stages sepsis populations.

Sci Rep. 2025-8-19

[5]
Integrated multi-omics analysis and machine learning identify G protein-coupled receptor-related signatures for diagnosis and clinical benefits in soft tissue sarcoma.

Front Immunol. 2025-7-21

[6]
Identification of immune-related biomarkers linked to systemic lupus erythematosus and dilated cardiomyopathy through integrated bioinformatics analysis and multiple machine learning algorithms.

Front Immunol. 2025-7-30

[7]
Multi-omics analysis identified macrophages as key contributors to sex-related differences in ulcerative colitis.

Front Immunol. 2025-6-24

[8]
Identifying inflammatory bowel disease subtypes: a comprehensive exploration of transcriptomic data and machine learning-based approaches.

Therap Adv Gastroenterol. 2025-8-12

[9]
Analysis and validation of diagnostic biomarkers and immune cell infiltration characteristics in Crohn's disease by integrating bioinformatics and machine learning.

Autoimmunity. 2024-12

[10]
Immune Microenvironment Characterization and Machine Learning-Guided Identification of Diagnostic Biomarkers for Ulcerative Colitis.

J Inflamm Res. 2025-7-9

本文引用的文献

[1]
Single-cell omics in inflammatory bowel disease: recent insights and future clinical applications.

Gut. 2025-7-7

[2]
Gut microbiome therapy: fecal microbiota transplantation vs live biotherapeutic products.

Gut Microbes. 2024

[3]
Outcomes of Patients With Prior Biologic Intolerance Are Better Than Those With Biologic Failure in Clinical Trials of Inflammatory Bowel Disease.

J Crohns Colitis. 2025-3-5

[4]
Challenges in IBD Research 2024: Precision Medicine.

Inflamm Bowel Dis. 2024-5-23

[5]
Safety and efficacy of autologous haematopoietic stem-cell transplantation with low-dose cyclophosphamide mobilisation and reduced intensity conditioning versus standard of care in refractory Crohn's disease (ASTIClite): an open-label, multicentre, randomised controlled trial.

Lancet Gastroenterol Hepatol. 2024-4

[6]
Biologic Therapy for Inflammatory Bowel Disease: Real-World Comparative Effectiveness and Impact of Drug Sequencing in 13 222 Patients within the UK IBD BioResource.

J Crohns Colitis. 2024-6-3

[7]
Incidence of Inflammatory Bowel Disease in Urban China: A Nationwide Population-based Study.

Clin Gastroenterol Hepatol. 2023-12

[8]
Targeting PDK2 rescues stress-induced impaired brain energy metabolism.

Mol Psychiatry. 2023-10

[9]
The role of protein arginine deiminase 4-dependent neutrophil extracellular traps formation in ulcerative colitis.

Front Immunol. 2023

[10]
The Role of Pyruvate Metabolism in Mitochondrial Quality Control and Inflammation.

Mol Cells. 2023-5-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索