文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用先进的机器学习算法探索银屑病预测中的免疫炎症标志物。

Exploring immune-inflammation markers in psoriasis prediction using advanced machine learning algorithms.

作者信息

Yang Li, He Shixin, Tang Li, Qin Xiao, Zheng Yan

机构信息

Department of Medical Cosmetology, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China.

出版信息

Front Immunol. 2025 Jul 31;16:1619490. doi: 10.3389/fimmu.2025.1619490. eCollection 2025.


DOI:10.3389/fimmu.2025.1619490
PMID:40821804
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12350470/
Abstract

BACKGROUND: Psoriasis is a chronic immune-mediated inflammatory skin disorder characterized by multifactorial pathogenesis. Recent studies have extensively highlighted the strong associations between psoriasis and various inflammatory markers, which are considered novel predictive tools for evaluating systemic inflammation. METHODS: Cross-sectional data from the NHANES were analyzed in this study. To assess model performance and generalizability, the dataset was randomly divided into 70% for training and 30% for validation. To address class imbalance in the training data, a hybrid resampling technique (SMOTEENN) was applied. Subsequently, nine classification algorithms were developed using the processed training set, including random forest, neural networks, XGBoost, k-nearest neighbors, gradient boosting, logistic regression, naïve Bayes, AdaBoost, and SVMs. The final gradient boosting was implemented via the gbm package in R, with hyperparameters selected from the default tuning grid of the caret framework. Inflammatory biomarkers with the highest classification utility were identified based on the predictions of the best-performing model. RESULTS: A total of 22,908 participants were included in the final analysis. Gradient boosting (AUC: 0.629, 95% CI: 0.588-0.669) demonstrated the highest performance, followed closely by logistic regression (AUC: 0.627, 95% CI: 0.588-0.666). Among all the inflammatory markers, MLR exhibited the best classification performance, with an AUC value of 0.662 (95% CI: 0.640-0.683), followed by NLMR, with an AUC value of 0.661 (95% CI: 0.640-0.683). Other markers, including the NLR, dNLR, SII, SIRI, and PLR, had AUC values ranging from 0.658 to 0.661. The MLR had the highest relative importance score, demonstrating its critical role in the model's predictive performance for psoriasis classification. The NLR ranked second, followed by the SII and SIRI, which had moderate contributions, whereas the PLR contributed the least. CONCLUSIONS: Among all the tested algorithms, the gradient boosting model achieved the best performance. Not only does it achieve the highest predictive accuracy, but it also excels in classification efficacy and feature importance analysis, highlighting key inflammatory markers such as the MLR, SII, and NLR. These markers are significant as reliable indicators for evaluating systemic inflammation and predicting the development of psoriasis, emphasizing their potential clinical applications.

摘要

背景:银屑病是一种慢性免疫介导的炎症性皮肤病,其发病机制具有多因素性。最近的研究广泛强调了银屑病与各种炎症标志物之间的紧密关联,这些标志物被认为是评估全身炎症的新型预测工具。 方法:本研究分析了美国国家健康与营养检查调查(NHANES)的横断面数据。为了评估模型性能和通用性,将数据集随机分为70%用于训练,30%用于验证。为了解决训练数据中的类别不平衡问题,应用了一种混合重采样技术(SMOTEENN)。随后,使用处理后的训练集开发了九种分类算法,包括随机森林、神经网络、XGBoost、k近邻、梯度提升、逻辑回归、朴素贝叶斯、AdaBoost和支持向量机。最终的梯度提升通过R语言中的gbm包实现,超参数从caret框架的默认调优网格中选择。根据表现最佳的模型的预测结果,确定了具有最高分类效用的炎症生物标志物。 结果:最终分析共纳入22908名参与者。梯度提升(AUC:0.629,95%可信区间:0.588 - 0.669)表现最佳,紧随其后的是逻辑回归(AUC:0.627,95%可信区间:0.588 - 0.666)。在所有炎症标志物中,混合淋巴细胞反应(MLR)表现出最佳的分类性能,AUC值为0.662(95%可信区间:0.640 - 0.683),其次是中性粒细胞与淋巴细胞比值(NLMR),AUC值为0.661(95%可信区间:0.640 - 0.683)。其他标志物,包括中性粒细胞与淋巴细胞比值(NLR)、衍生中性粒细胞与淋巴细胞比值(dNLR)、全身免疫炎症指标(SII)、系统性免疫炎症反应指数(SIRI)和血小板与淋巴细胞比值(PLR),AUC值在0.658至0.661之间。MLR的相对重要性得分最高,表示其在银屑病分类模型预测性能中起关键作用。NLR排名第二,其次是SII和SIRI,它们的贡献适中,而PLR的贡献最小。 结论:在所有测试算法中,梯度提升模型表现最佳。它不仅实现了最高的预测准确性,而且在分类效能和特征重要性分析方面也表现出色,突出了关键炎症标志物,如MLR、SII和NLR。这些标志物作为评估全身炎症和预测银屑病发展的可靠指标具有重要意义,强调了它们潜在的临床应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba2a/12350470/0f7819617dfa/fimmu-16-1619490-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba2a/12350470/42f1b7c50744/fimmu-16-1619490-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba2a/12350470/6dfd0498beaf/fimmu-16-1619490-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba2a/12350470/c5295bbec989/fimmu-16-1619490-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba2a/12350470/12f98124d97b/fimmu-16-1619490-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba2a/12350470/0f7819617dfa/fimmu-16-1619490-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba2a/12350470/42f1b7c50744/fimmu-16-1619490-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba2a/12350470/6dfd0498beaf/fimmu-16-1619490-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba2a/12350470/c5295bbec989/fimmu-16-1619490-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba2a/12350470/12f98124d97b/fimmu-16-1619490-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba2a/12350470/0f7819617dfa/fimmu-16-1619490-g005.jpg

相似文献

[1]
Exploring immune-inflammation markers in psoriasis prediction using advanced machine learning algorithms.

Front Immunol. 2025-7-31

[2]
Development of Machine Learning-based Algorithms to Predict the 2- and 5-year Risk of TKA After Tibial Plateau Fracture Treatment.

Clin Orthop Relat Res. 2025-3-12

[3]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[4]
Supervised Machine Learning Models for Predicting Sepsis-Associated Liver Injury in Patients With Sepsis: Development and Validation Study Based on a Multicenter Cohort Study.

J Med Internet Res. 2025-5-26

[5]
Low-grade systemic inflammation is associated with risk of psoriasis in a general population study of more than 100 000 individuals.

Br J Dermatol. 2025-7-17

[6]
Predictive value of systemic inflammatory indices for perinatal outcomes following cervical cerclage: a retrospective cohort study.

BMC Pregnancy Childbirth. 2025-7-10

[7]
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?

Clin Orthop Relat Res. 2024-9-1

[8]
Integrated machine learning and population attributable fraction analysis of systemic inflammatory indices for mortality risk prediction in diabetes and prediabetes.

Ann Med. 2025-12

[9]
Associations of novel complete blood count-derived inflammatory markers with psoriasis: a systematic review and meta-analysis.

Arch Dermatol Res. 2024-5-24

[10]
Prediction of Insulin Resistance in Nondiabetic Population Using LightGBM and Cohort Validation of Its Clinical Value: Cross-Sectional and Retrospective Cohort Study.

JMIR Med Inform. 2025-6-13

本文引用的文献

[1]
The effect of IL-17 and IL-23 ınhibitors on hematological ınflammatory parameters in patients with psoriasis vulgaris.

Ir J Med Sci. 2025-6-2

[2]
Treatment of Plaque Psoriasis with Guselkumab Reduces Systemic Inflammatory Burden as Measured by Neutrophil/Lymphocyte Ratio, Platelet/Lymphocyte Ratio, and Monocyte/Lymphocyte Ratio: A post hoc Analysis of Three Randomised Clinical Trials.

Dermatology. 2025-4-10

[3]
Low Serum Methylglyoxal Levels Correlate with Psoriasis Severity and Inflammatory Response Indices.

Pathophysiology. 2025-2-3

[4]
Association of systemic immune-inflammation index (SII) with risk of psoriasis: a cross-sectional analysis of National Health and Nutrition Examination Survey 2011-2014.

Eur J Med Res. 2025-1-29

[5]
Are IL-17 inhibitors superior to IL-23 inhibitors in reducing systemic inflammation in moderate-to-severe plaque psoriasis? A retrospective cohort study.

Arch Dermatol Res. 2025-1-13

[6]
Effectiveness of long-term bimekizumab treatment and predictive factors for responders in moderate-to-severe psoriasis: A 52-week real-world study.

J Dermatol. 2025-2

[7]
Association Between Systemic Immune-Inflammation Index and Psoriasis, Psoriasis Comorbidities, and All-Cause Mortality: A Study Based on NHANES.

Immun Inflamm Dis. 2024-10

[8]
Association between systemic immunity-inflammation index and psoriasis among outpatient US adults.

Front Immunol. 2024

[9]
Integrated bioinformatics combined with machine learning to analyze shared biomarkers and pathways in psoriasis and cervical squamous cell carcinoma.

Front Immunol. 2024

[10]
Deciphering the Genetic Links between Psychological Stress, Autophagy, and Dermatological Health: Insights from Bioinformatics, Single-Cell Analysis, and Machine Learning in Psoriasis and Anxiety Disorders.

Int J Mol Sci. 2024-5-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索