文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

整合机器学习与人群归因分数分析系统性炎症指标以预测糖尿病及糖尿病前期的死亡风险

Integrated machine learning and population attributable fraction analysis of systemic inflammatory indices for mortality risk prediction in diabetes and prediabetes.

作者信息

Zhang Zixi, Li Chenyang, Xiao Yichao, Liu Chan, Luo Xiaoqin, Wang Cancan, Dai Yongguo, Lin Qiuzhen, Zhang Zeying, Zheng Cheng, Lin Jiafeng, Tu Tao, Liu Qiming

机构信息

Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China.

Department of Cardiology, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China.

出版信息

Ann Med. 2025 Dec;57(1):2536204. doi: 10.1080/07853890.2025.2536204. Epub 2025 Jul 25.


DOI:10.1080/07853890.2025.2536204
PMID:40856552
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12302434/
Abstract

BACKGROUND: Chronic systemic inflammation is a key contributor to cardiometabolic complications in diabetes mellitus (DM) and prediabetes (PreDM). Composite inflammatory indices-including neutrophil-to-lymphocyte ratio (NLR), monocyte-to-lymphocyte ratio (MLR), systemic inflammation response index (SIRI), systemic immune-inflammation index (SII), platelet-to-hemoglobin ratio (PHR), and aggregate inflammation systemic index (AISI)-have shown prognostic value for mortality. However, their integrated assessment using machine learning and quantification at the population level remain limited. METHODS: In this retrospective cohort study, 11,304 adults with DM or PreDM from the National Health and Nutrition Examination Survey (NHANES, 2005-2018) were analyzed. The primary outcomes were all-cause and cardiovascular mortality. Associations between inflammatory indices and mortality were evaluated using Cox proportional hazards models. Predictive performance was assessed via Extreme Gradient Boosting (XGBoost), and population attributable fractions (PAFs) estimated the mortality burden related to systemic inflammation. RESULTS: NLR, MLR, SIRI, SII, and AISI were independently associated with all-cause and cardiovascular mortality. MLR showed the strongest association (HR: 2.948 and 3.717 for all-cause and CVD mortality, respectively). XGBoost identified SIRI, SII, AISI, MLR, and NLR as key predictors, with SIRI ranked highest for cardiovascular mortality. Inclusion of inflammatory indices improved model discrimination and calibration. PAF analysis suggested that 10-20% of mortality reduction could be attributed to improved inflammatory profiles. CONCLUSION: Systemic inflammatory indices are independent predictors of mortality in individuals with DM or PreDM. Their integration into machine learning models enhances risk prediction and may inform population-level strategies for cardiometabolic risk stratification.

摘要

背景:慢性全身性炎症是糖尿病(DM)和糖尿病前期(PreDM)中心血管代谢并发症的关键促成因素。包括中性粒细胞与淋巴细胞比值(NLR)、单核细胞与淋巴细胞比值(MLR)、全身炎症反应指数(SIRI)、全身免疫炎症指数(SII)、血小板与血红蛋白比值(PHR)以及综合炎症全身指数(AISI)在内的综合炎症指标已显示出对死亡率的预后价值。然而,在人群水平上使用机器学习对其进行综合评估和量化仍然有限。 方法:在这项回顾性队列研究中,分析了来自美国国家健康与营养检查调查(NHANES,2005 - 2018年)的11304名患有DM或PreDM的成年人。主要结局是全因死亡率和心血管死亡率。使用Cox比例风险模型评估炎症指标与死亡率之间的关联。通过极端梯度提升(XGBoost)评估预测性能,人群归因分数(PAF)估计与全身炎症相关的死亡负担。 结果:NLR、MLR、SIRI、SII和AISI与全因死亡率和心血管死亡率独立相关。MLR显示出最强的关联(全因死亡率和心血管疾病死亡率的HR分别为2.948和3.717)。XGBoost将SIRI、SII、AISI、MLR和NLR确定为关键预测因子,其中SIRI在心血管死亡率方面排名最高。纳入炎症指标可改善模型的辨别力和校准。PAF分析表明,10 - 20%的死亡率降低可归因于炎症指标的改善。 结论:全身炎症指标是DM或PreDM患者死亡率的独立预测因子。将它们纳入机器学习模型可增强风险预测,并可能为心血管代谢风险分层的人群水平策略提供参考。

相似文献

[1]
Integrated machine learning and population attributable fraction analysis of systemic inflammatory indices for mortality risk prediction in diabetes and prediabetes.

Ann Med. 2025-12

[2]
The association of obesity and lipid-related indicators with all-cause and cardiovascular mortality risks in patients with diabetes or prediabetes: a cross-sectional study based on machine learning algorithms.

Front Endocrinol (Lausanne). 2025-6-2

[3]
Impact of systemic immune inflammation index and systemic inflammation response index on all-cause and cardiovascular mortality in cardiovascular-kidney-metabolic syndrome.

Eur J Med Res. 2025-7-21

[4]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[5]
Systemic Immune-Inflammation Index and Related Hematologic Markers as Prognostic Tools in Type 2 Diabetes.

Medicina (Kaunas). 2025-8-9

[6]
Impact of abdominal obesity indices on all-cause and cardiovascular mortality in individuals with pre-diabetes and diabetes: insights from a prospective cohort study.

BMC Public Health. 2025-8-14

[7]
Predictive value of systemic inflammatory indices for perinatal outcomes following cervical cerclage: a retrospective cohort study.

BMC Pregnancy Childbirth. 2025-7-10

[8]
A retrospective analysis from NHANES 2003-2018 on the associations between inflammatory markers and coronary artery disease, all-cause mortality and cardiovascular mortality.

PLoS One. 2025-7-9

[9]
Exploring immune-inflammation markers in psoriasis prediction using advanced machine learning algorithms.

Front Immunol. 2025-7-31

[10]
Correlation between CBC-derived inflammatory indicators and all-cause mortality with rheumatoid arthritis: a population-based study.

Front Med (Lausanne). 2025-6-10

本文引用的文献

[1]
Recent trends in diabetes mellitus diagnosis: an in-depth review of artificial intelligence-based techniques.

Diabetes Res Clin Pract. 2025-6

[2]
Predictors of smartphone addiction in adolescents with depression: combing the machine learning and moderated mediation model approach.

Behav Res Ther. 2025-6

[3]
Advances in artificial intelligence for diabetes prediction: insights from a systematic literature review.

Artif Intell Med. 2025-6

[4]
Oxidative stress and inflammation mediate the adverse effects of cadmium exposure on all-cause and cause-specific mortality in patients with diabetes and prediabetes.

Cardiovasc Diabetol. 2025-3-29

[5]
Association between monocyte-to-lymphocyte ratio and cardiovascular diseases: insights from NHANES data.

Diabetol Metab Syndr. 2025-3-24

[6]
Nonlinear relationship and predictive value of systemic immune-inflammation index for atrial fibrillation recurrence after catheter ablation in hypertensive patients.

Heart Rhythm. 2025-9

[7]
Association of systemic inflammation response index with latent tuberculosis infection and all-cause mortality: a cohort study from NHANES 2011-2012.

Front Immunol. 2025-2-19

[8]
The triglyceride-glucose index and its obesity-related derivatives as predictors of all-cause and cardiovascular mortality in hypertensive patients: insights from NHANES data with machine learning analysis.

Cardiovasc Diabetol. 2025-1-29

[9]
Association between complete blood cell count-derived inflammatory biomarkers and gallstones prevalence in American adults under 60 years of age.

Front Immunol. 2025-1-10

[10]
Potential Use and Limitation of Artificial Intelligence to Screen Diabetes Mellitus in Clinical Practice: A Literature Review.

Acta Med Indones. 2024-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索