文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

胶质瘤的流行病学分析及预测与临床决策列线图构建

Analysis of epidemiology and nomogram construction for prediction and clinical decision-making in gliomas.

作者信息

Zhao Yuxin, Xu Zihan, Liu Ying, Ye Ming, Chen Rui, Cao Zhongyu, Zhou Hong, Zhou Yang

机构信息

Department of Ultrasound, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China.

Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.

出版信息

Front Immunol. 2025 Aug 1;16:1624142. doi: 10.3389/fimmu.2025.1624142. eCollection 2025.


DOI:10.3389/fimmu.2025.1624142
PMID:40821809
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12354384/
Abstract

BACKGROUND: Gliomas are the most common primary malignant brain tumors with high mortality. Exploring the epidemiologic characteristics and prognostic factors of gliomas, and constructs a nomogram-based predictive model can help to evaluate the public health impact, optimize risk stratification, and guide treatment decision-making. METHODS: This cross-sectional epidemiological analysis used the most recently released data from the Surveillance, Epidemiology, and End Results (SEER) database from January 1, 2000, to December 31, 2019. The SEER-18 database provided data for incidence, prevalence, survival, and initial treatment, as well as the establishment and validation of a nomogram to predict the survival probability of individual patients with gliomas. RESULTS: Among 71,040 cases of glioma patients, the majority were male (40,500 [57.01%]) and White race (52,443 [73.82%]), with glioblastoma (41,125 [57.89%]) as the predominant histology type, primarily located at the cerebrum (49,307 [69.41%]), and mostly categorized as high-grade tumors (22,447 [31.60%]). The age-adjusted incidence rate of gliomas decreased from 4.42 per 100,000 persons in 2000 to 3.81 per 100,000 persons in 2019 [APC of -0.53 (95%CI, -0.71 to -0.34)]. In the incidence analysis among different tumor histology, grade and primary site, glioblastoma, high-grade tumor and primary site of cerebrum were with the highest incidence, respectively. Additionally, the incidence of different histology varied significantly among different age groups. In the multivariable analysis, age, histology, grade, site and treatment (chemotherapy, radiation and surgery) were identified as prognostic factors. Among these factors, age and grade had the most significant impact on prognosis. Furthermore, a predictive nomogram model for 1-/3-/5-year survival rates of gliomas was developed, incorporating the prognostic factors. For the training and test cohorts, the concordance indexes of the nomogram were 0.796 (95%CI, 0.792-0.805) and 0.799 (95%CI, 0.793-0.808), respectively. CONCLUSION: The incidence and survival of gliomas showed significant variations across different age, histology, grade, site, and treatment groups. The nomogram model based on these factors could accurately predict the survival among patients with gliomas and aid in optimizing treatment decisions.

摘要

背景:胶质瘤是最常见的原发性恶性脑肿瘤,死亡率很高。探索胶质瘤的流行病学特征和预后因素,并构建基于列线图的预测模型,有助于评估其对公众健康的影响、优化风险分层并指导治疗决策。 方法:这项横断面流行病学分析使用了监测、流行病学和最终结果(SEER)数据库于2000年1月1日至2019年12月31日期间发布的最新数据。SEER-18数据库提供了发病率、患病率、生存率和初始治疗的数据,以及用于预测胶质瘤个体患者生存概率的列线图的建立和验证。 结果:在71040例胶质瘤患者中,大多数为男性(40500例[57.01%])和白人(52443例[73.82%]),胶质母细胞瘤(41125例[57.89%])是主要的组织学类型,主要位于大脑(49307例[69.41%]),大多归类为高级别肿瘤(22447例[31.60%])。胶质瘤的年龄调整发病率从2000年的每10万人4.42例降至2019年的每10万人3.81例[年度百分比变化(APC)为-0.53(95%CI,-0.71至-0.34)]。在不同肿瘤组织学、分级和原发部位的发病率分析中,胶质母细胞瘤、高级别肿瘤和大脑原发部位的发病率分别最高。此外,不同组织学的发病率在不同年龄组之间有显著差异。在多变量分析中,年龄、组织学、分级、部位和治疗(化疗、放疗和手术)被确定为预后因素。在这些因素中,年龄和分级对预后的影响最为显著。此外,开发了一个用于胶质瘤1年/3年/5年生存率的预测列线图模型,纳入了预后因素。对于训练队列和测试队列,列线图的一致性指数分别为0.796(95%CI,0.792-0.805)和0.799(95%CI,0.793-0.808)。 结论:胶质瘤的发病率和生存率在不同年龄、组织学、分级、部位和治疗组之间存在显著差异。基于这些因素的列线图模型可以准确预测胶质瘤患者的生存情况,并有助于优化治疗决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b29/12354384/9e9adb18b9fd/fimmu-16-1624142-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b29/12354384/e0ee9acf45bb/fimmu-16-1624142-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b29/12354384/691d7ac5b7c2/fimmu-16-1624142-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b29/12354384/be742e6d5c7b/fimmu-16-1624142-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b29/12354384/ffb57ba78f5a/fimmu-16-1624142-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b29/12354384/3c0dec5fd2a5/fimmu-16-1624142-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b29/12354384/a65c0dcedde0/fimmu-16-1624142-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b29/12354384/9e9adb18b9fd/fimmu-16-1624142-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b29/12354384/e0ee9acf45bb/fimmu-16-1624142-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b29/12354384/691d7ac5b7c2/fimmu-16-1624142-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b29/12354384/be742e6d5c7b/fimmu-16-1624142-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b29/12354384/ffb57ba78f5a/fimmu-16-1624142-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b29/12354384/3c0dec5fd2a5/fimmu-16-1624142-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b29/12354384/a65c0dcedde0/fimmu-16-1624142-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b29/12354384/9e9adb18b9fd/fimmu-16-1624142-g007.jpg

相似文献

[1]
Analysis of epidemiology and nomogram construction for prediction and clinical decision-making in gliomas.

Front Immunol. 2025-8-1

[2]
Individualized Prediction of Overall Survival Time for Patients with Primary Intramedullary Spinal Cord Astrocytoma: A Population-Based Study.

World Neurosurg. 2025-1

[3]
Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation.

Cochrane Database Syst Rev. 2018-1-22

[4]
A nomogram incorporating treatment data for predicting overall survival in gastroenteropancreatic neuroendocrine tumors: a population-based cohort study.

Int J Surg. 2024-4-1

[5]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[6]
Epidemiology and survival of patients with spinal meningiomas: a large retrospective cohort study.

Int J Surg. 2024-2-1

[7]
The effectiveness and cost-effectiveness of carmustine implants and temozolomide for the treatment of newly diagnosed high-grade glioma: a systematic review and economic evaluation.

Health Technol Assess. 2007-11

[8]
Development and validation of a nomogram for predicting overall and cancer-specific survival in elderly patients (≥ 65 years) with epithelial ovarian cancer.

Eur J Med Res. 2025-9-1

[9]
Clinical features, treatment and prognosis analysis of distant metastatic esophageal cancer.

Sci Rep. 2025-8-22

[10]
A novel nomogram for survival prediction in renal cell carcinoma patients with brain metastases: an analysis of the SEER database.

Front Immunol. 2025-6-30

本文引用的文献

[1]
A novel web-based dynamic prognostic nomogram for gastric signet ring cell carcinoma: a multicenter population-based study.

Front Immunol. 2024-4-10

[2]
Molecular diagnostic tools for the World Health Organization (WHO) 2021 classification of gliomas, glioneuronal and neuronal tumors; an EANO guideline.

Neuro Oncol. 2023-10-3

[3]
Impact of age and gender on glioblastoma onset, progression, and management.

Mech Ageing Dev. 2023-4

[4]
Epidemiology and risk stratification of low-grade gliomas in the United States, 2004-2019: A competing-risk regression model for survival analysis.

Front Oncol. 2023-3-1

[5]
Prognostic model for predicting overall survival in patients with glioblastoma: an analysis based on the SEER database.

J Investig Med. 2023-4

[6]
Glioblastoma and Other Primary Brain Malignancies in Adults: A Review.

JAMA. 2023-2-21

[7]
Analysis of Prognostic Factors of Low-Grade Gliomas in Adults Using Time-Dependent Competing Risk Models: A Population Study Based on the Surveillance, Epidemiology, and End Results Database.

Cancer Control. 2022

[8]
A population study of clinical trial accrual for women and minorities in neuro-oncology following the NIH Revitalization Act.

Neuro Oncol. 2022-8-1

[9]
Trends in Intracranial Glioma Incidence and Mortality in the United States, 1975-2018.

Front Oncol. 2021-11-1

[10]
CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2014-2018.

Neuro Oncol. 2021-10-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索