Sirgedaitė-Šėžienė Vaida, Striganavičiūtė Greta, Šilanskienė Milana, Kniuipytė Inesa, Praspaliauskas Marius, Vaškevičienė Irena, Lemanas Egidijus, Vaitiekūnaitė Dorotėja
Laboratory of Forest Plant Biotechnology, Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Girionys, Lithuania.
Laboratory of Heat-Equipment Research and Testing, Lithuanian Energy Institute, Kaunas, Lithuania.
Front Plant Sci. 2025 Aug 1;16:1617432. doi: 10.3389/fpls.2025.1617432. eCollection 2025.
This study investigates the phytoremediation potential of L. and L. in response to As, Cd, and Pb exposure using hydroponics. Seedlings were exposed to 5-50 µM Cd, 100-1000 µM As, and 50-200 µM Pb in , and to 5-50 µM Cd, 25-100 µM As, and 200-600 µM Pb in . By analyzing growth, heavy metal(loid) (hereafter referred to as 'metals') uptake, biochemical markers (phenolics, soluble sugars, lipid peroxidation, antioxidant enzymes), and shifts in elemental (P, S, Mg, K, Ca, Mn, Zn, Cu, Fe) composition, this study provides a comprehensive evaluation of these species response to metal contamination at the seedling stage. Distinct dose- and metal-specific responses were observed, with Pb exposure inducing enhancing growth effects (height increase up to 27%, total chlorophyll increase up to 67%) and hormesis at low to moderate concentrations (equivalent to 200 µM of Pb(NO)), while Cd and As reduced growth in both species. Biochemical analyses revealed significant impacts on the antioxidant activity in response to metal stress, with differences in the involvement of enzymatic vs. non-enzymatic defenses, i.e., an initial enzymatic response, and a shift towards secondary metabolite production under prolonged or severe stress. exhibited higher translocation of Cd (0.77 at 5 µM), suggesting its potential for phytoextraction, while both species demonstrated strong phytostabilization capacity for Pb (up to 0.54% of Pb in root DW). Nutrient homeostasis disruptions were observed, with both species showing altered nutrient uptake and distribution, e.g., co-accumulation of Cd and Zn, with Zn increase up to 639% in Cd-treated (50 µM). These results offer valuable insights into the biochemical mechanisms underlying heavy metal tolerance in and , while suggesting directions for future studies on the real-world applicability of phytoremediation strategies.
本研究采用水培法,研究了[植物名称1]和[植物名称2]对砷、镉和铅暴露的植物修复潜力。幼苗分别在[条件1]中暴露于5 - 50 μM镉、100 - 1000 μM砷和50 - 200 μM铅,以及在[条件2]中暴露于5 - 50 μM镉、25 - 100 μM砷和200 - 600 μM铅。通过分析生长情况、重金属(类金属,以下简称“金属”)吸收、生化标记物(酚类、可溶性糖、脂质过氧化、抗氧化酶)以及元素(磷、硫、镁、钾、钙、锰、锌、铜、铁)组成的变化,本研究全面评估了这些植物在幼苗期对金属污染的响应。观察到了明显的剂量和金属特异性反应,铅暴露在低至中等浓度(相当于200 μM硝酸铅)时诱导生长增强效应(株高增加高达27%,总叶绿素增加高达67%)和兴奋效应,而镉和砷均降低了两种植物的生长。生化分析表明,金属胁迫对抗氧化活性有显著影响,酶促防御与非酶促防御的参与存在差异,即最初的酶促反应,以及在长期或严重胁迫下向次生代谢产物产生的转变。[植物名称1]表现出更高的镉转运率(5 μM时为0.77),表明其具有植物提取的潜力,而两种植物对铅均表现出较强的植物稳定能力(根干重中铅含量高达0.54%)。观察到了营养稳态的破坏,两种植物均表现出养分吸收和分配的改变,例如镉和锌的共积累,在镉处理的[植物名称2](50 μM)中锌增加高达639%。这些结果为[植物名称1]和[植物名称2]中重金属耐受性的生化机制提供了有价值的见解,同时为植物修复策略在实际应用中的未来研究方向提供了参考。