Suppr超能文献

从热力学稳定和动力学捕获的枯草杆菌蛋白酶(ISP1和SbtE)探索能量景观的序列和结构决定因素。

Exploring the sequence and structural determinants of the energy landscape from thermodynamically stable and kinetically trapped subtilisins: ISP1 and SbtE.

作者信息

Hood Miriam R, Marqusee Susan

机构信息

Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA.

Department of Chemistry, University of California, Berkeley, Berkeley, California, USA.

出版信息

Protein Sci. 2025 Sep;34(9):e70264. doi: 10.1002/pro.70264.

Abstract

A protein's energy landscape, all accessible conformations, their populations, and dynamics of interconversion, is encoded in its primary sequence. While how this sequence encodes a protein's native state is well understood, how it encodes the dynamics, such as the kinetic barriers for unfolding and refolding, is not. Here we have looked at two subtiliase homologs from Bacillus subtilis, Intracellular Subtilisin Protease 1 (ISP1) and Subtilisin E (SbtE), that are expected to have very different dynamics. ISP1, an intracellular protein, has a small pro-domain thought to act simply as a zymogen, whereas the extracellular SbtE has a large pro-domain required for folding. The stability and kinetics of the mature proteins have been previously characterized; here we compare their energy landscapes with and without the pro-domain, examining global and local energetics of the mature proteases and the effect of each pro-domain. We find that ISP1's pro-domain has limited impact on the energy landscape of the mature protein. For SbtE, the protein is thermodynamically unstable and kinetically trapped without the pro-domain. The pro-domains' effects on the flexibility of the core of the proteins are different: in the absence of its pro-domain, ISP1's core becomes more flexible, while SbtE's core becomes more rigid. ISP1 contains a conserved insertion, which points to a potential source for these differences. These homologs show how changes in the primary sequence can dramatically alter a protein's energy landscape and highlight the need for large-scale, high-throughput studies on the relationship between primary sequence and conformational dynamics.

摘要

蛋白质的能量景观,即所有可及的构象、它们的种群以及相互转化的动力学,都编码在其一级序列中。虽然人们已经很好地理解了这种序列如何编码蛋白质的天然状态,但它如何编码动力学,比如展开和重新折叠的动力学障碍,却并不清楚。在这里,我们研究了来自枯草芽孢杆菌的两种枯草杆菌蛋白酶同源物,细胞内枯草杆菌蛋白酶1(ISP1)和枯草杆菌蛋白酶E(SbtE),预计它们具有非常不同的动力学。ISP1是一种细胞内蛋白质,有一个小的前结构域,被认为仅作为一种酶原起作用,而细胞外的SbtE有一个折叠所需的大的前结构域。成熟蛋白质的稳定性和动力学先前已经得到了表征;在这里,我们比较了有和无前结构域时它们的能量景观,研究了成熟蛋白酶的全局和局部能量学以及每个前结构域的影响。我们发现ISP1的前结构域对成熟蛋白质的能量景观影响有限。对于SbtE,没有前结构域时该蛋白质在热力学上不稳定且在动力学上被困住。前结构域对蛋白质核心灵活性的影响是不同的:在没有其前结构域的情况下,ISP1的核心变得更灵活,而SbtE的核心变得更僵硬。ISP1包含一个保守插入序列,这指出了这些差异的一个潜在来源。这些同源物展示了一级序列的变化如何能显著改变蛋白质的能量景观,并突出了对一级序列与构象动力学之间关系进行大规模、高通量研究的必要性。

相似文献

7
Theory on the Design Principles of Protein Molecular Oscillatory Machines.蛋白质分子振荡机器的设计原理理论
J Phys Chem B. 2025 Jul 31;129(30):7753-7765. doi: 10.1021/acs.jpcb.5c04019. Epub 2025 Jul 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验