Suppr超能文献

用于高面积容量钠离子电池电极的具有加速氧化还原动力学的普鲁士蓝类似物的疏水晶格工程

Hydrophobic Lattice Engineering of Prussian Blue Analogs with Accelerated Redox Kinetics for High-Areal-Capacity Sodium-Ion Battery Electrodes.

作者信息

Lin Xihao, Zhou Boao, Xu Shiyi, Zhang Hang, Fan Yameng, Ju Zhijin, Gao Yun, Li Li, Wang Jiazhao, Chou Shulei

机构信息

Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.

Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou, Zhejiang 325035, China.

出版信息

ACS Nano. 2025 Sep 2;19(34):31023-31037. doi: 10.1021/acsnano.5c08791. Epub 2025 Aug 18.

Abstract

Sodium-ion batteries (SIBs) are considered a promising solution for large-scale energy storage owing to their high safety and economic advantages. Fe-based Prussian blue analogs (PBAs) have attracted significant attention due to their open-framework structure, low cost, and high theoretical capacity (170 mAh g). However, huge lattice distortion, moisture sensitivity of high-spin Fe (Fe), and sluggish electron transport induced by strong Fe···Fe electronic coupling of Fe-based PBAs impede their industrial application. Herein, trace Zn incorporation is employed as a hydrophobic lattice engineering strategy to precisely regulate the coordination environment of Fe-N octahedra without compromising their geometric integrity. This strategy integrates lattice modulation, coordination structure, and electronic regulation to synergistically alleviate structural distortion, enhance air stability, and facilitate the transportation charge and Na ions, especially in high-loading electrodes. As a result, the optimized Fe-based PBAs electrode achieves a capacity retention of over 84% after 200 cycles, even at a high mass loading (22 mg cm). Moreover, after 1 month of exposure to a humid environment, a high reversible capacity of 144 mAh g was maintained. This study presents a coordination-chemistry-guided approach for the rational design of stable PBAs, thereby narrowing the gap between fundamental research and industrial-scale applications of PBA-based SIBs.

摘要

钠离子电池(SIBs)因其高安全性和经济优势,被认为是大规模储能的一种有前景的解决方案。铁基普鲁士蓝类似物(PBAs)因其开放框架结构、低成本和高理论容量(170 mAh g)而备受关注。然而,巨大的晶格畸变、高自旋铁(Fe)的湿度敏感性以及铁基PBAs中强Fe···Fe电子耦合引起的缓慢电子传输阻碍了它们的工业应用。在此,采用微量锌掺入作为一种疏水晶格工程策略,在不损害其几何完整性的情况下精确调节Fe-N八面体的配位环境。该策略整合了晶格调制、配位结构和电子调控,以协同减轻结构畸变、增强空气稳定性,并促进电荷和钠离子的传输,特别是在高负载电极中。结果,优化后的铁基PBAs电极即使在高质量负载(22 mg cm)下,经过200次循环后仍能保持超过84%的容量保持率。此外,在潮湿环境中暴露1个月后,仍保持144 mAh g的高可逆容量。本研究提出了一种基于配位化学指导的方法来合理设计稳定的PBAs,从而缩小了基于PBA的SIBs基础研究与工业规模应用之间的差距。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验