Suppr超能文献

悬垂微滴蒸发可在数秒内制造光纤金属有机框架气体传感器。

Pendant Micro-droplet Evaporation Fabricates Fiber-optic MOF Gas Sensor in Seconds.

作者信息

Prakash Hungund Abhishek, Zhang Bohong, Subramaniyam Narasimman, Spudich Thomas, O'Malley Ryan, Mumtaz Farhan, Gerald Rex E, Huang Jie

机构信息

Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-0040, United States.

Department of Electronics and Communication Engineering, Sri Ramachandra Faculty of Engineering and Technology (SRET), Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India.

出版信息

ACS Sens. 2025 Sep 26;10(9):6564-6579. doi: 10.1021/acssensors.5c00982. Epub 2025 Aug 18.

Abstract

The development of photonic-based gas sensors using metal-organic frameworks (MOFs) and other microporous solids is often a multistep, complex process, typically involving MOF synthesis, purification, and attachment of microcrystals to an optical fiber end face. This study introduces a one-step method that integrates MOF synthesis and sensor head fabrication directly onto the fiber end face, forming an extrinsic Fabry-Perot interferometer (EFPI) with a thin film of MOF microcrystals. The resulting film, only 3-10-μm-thick, enhances sensor response by enabling rapid gas detection within seconds. Utilizing a pendant micro-droplet evaporation technique, this method forms a microporous MOF layer , allowing unreacted molecular components to act as an adhesive that secures the MOF crystallites to the optical fiber, potentially also contributing to the film's adsorption properties. This process, demonstrated with the HKUST-1 MOF as a model system, optimizes both the fabrication speed and sensor response times by reducing the film formation process to 24 s under nitrogen and 90 s in ambient conditions. Raman spectroscopy, X-ray diffraction (XRD), thermogravimetry (TGA), and energy dispersive X-ray spectroscopy (EDS) were used to validate the composition of the sensor head, confirming the presence of MOF crystallites as the primary sensing component within the EFPI film and characterizing additional film components that may enhance stability, selectivity, and response. This bottom-up approach holds significant promise for the scalable production of fiber-optic sensors that leverage MOF's gas adsorption properties.

摘要

利用金属有机框架(MOF)和其他微孔固体开发基于光子的气体传感器通常是一个多步骤的复杂过程,通常涉及MOF的合成、纯化以及将微晶附着到光纤端面上。本研究介绍了一种一步法,该方法将MOF合成和传感器头制造直接集成到光纤端面上,形成一个带有MOF微晶薄膜的外腔法布里-珀罗干涉仪(EFPI)。所得薄膜仅3-10微米厚,通过在几秒钟内实现快速气体检测来增强传感器响应。利用悬垂微滴蒸发技术,该方法形成了一个微孔MOF层,使未反应的分子成分充当将MOF微晶固定到光纤上的粘合剂,这也可能有助于薄膜的吸附特性。以HKUST-1 MOF作为模型系统演示了这一过程,通过在氮气下将成膜过程缩短至24秒,在环境条件下缩短至90秒,优化了制造速度和传感器响应时间。使用拉曼光谱、X射线衍射(XRD)、热重分析(TGA)和能量色散X射线光谱(EDS)来验证传感器头的组成,确认EFPI薄膜中存在MOF微晶作为主要传感成分,并对可能增强稳定性、选择性和响应的其他薄膜成分进行表征。这种自下而上的方法对于利用MOF气体吸附特性的光纤传感器的可扩展生产具有重大前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验