Suppr超能文献

孟加拉国登革热发病率的时间序列分析及其与气象风险因素的关联。

Time series analysis of dengue incidence and its association with meteorological risk factors in Bangladesh.

作者信息

Alam Kazi Estieque, Ahmed Md Jisan, Chalise Ritu, Rahman Md Abdur, Mathin Tasnia Thanim, Bhuiyan Md Ismile Hossain, Bhandari Prajwal, Hossain Delower

机构信息

Association of Coding, Technology, and Genomics (ACTG), Sher-e-Bangla Agricultural University (SAU), Dhaka, Bangladesh.

Department of Agricultural Economics, Sher-e-Bangla Agricultural University (SAU), Dhaka, Bangladesh.

出版信息

PLoS One. 2025 Aug 18;20(8):e0323238. doi: 10.1371/journal.pone.0323238. eCollection 2025.

Abstract

Dengue is a mosquito-borne viral disease affecting tropical and subtropical regions. In Bangladesh, dengue fever remains a rising public health threat driven by meteorological factors. This study aimed to assess the temporal trends and how meteorological factors influence dengue incidence in Bangladesh from 2008 to 2024. Monthly reported dengue cases were analyzed using time series forecasting techniques and multivariate Poisson regression models. Seasonal Autoregressive Integrated Moving Average (SARIMA) and Extreme Gradient Boosting (XGBoost) models were used for forecasting. Correlation analysis and Poisson regression assessed meteorological effects with one- and two-month lags. The result indicates that the highest number of dengue cases was found in September 2023 (79,598 cases). Autocorrelation revealed a strong positive correlation at 1-month and 2-month lags. Forecasts from 2024-2027 predict that dengue cases will fluctuate between 10,000 and 20,000 annually from the predictive models. Spearman's rank correlation indicated significant positive associations between dengue cases and precipitation, temperature, wind speed, and humidity. Multivariable Poisson regression revealed that temperature (°C) (IRR = 1.02), Humidity (%) (IRR = 1.25), and Wind speed (m/s) (IRR = 1.10) significantly increased dengue incidence. Between multivariate SARIMA, XGBoost, and Poisson regression, the best-performing model was ARIMA (RMSE: 5058.066). In conclusion, the study highlights the substantial influence of climatic factors on dengue dynamics in Bangladesh, emphasizing the need to integrate meteorological data into early warning systems and develop adaptive, climate-informed control and surveillance strategies.

摘要

登革热是一种由蚊子传播的病毒性疾病,影响热带和亚热带地区。在孟加拉国,登革热仍然是一种日益严重的公共卫生威胁,由气象因素驱动。本研究旨在评估2008年至2024年孟加拉国登革热发病率的时间趋势以及气象因素如何影响登革热发病率。使用时间序列预测技术和多元泊松回归模型分析每月报告的登革热病例。季节性自回归积分移动平均(SARIMA)和极端梯度提升(XGBoost)模型用于预测。相关性分析和泊松回归评估了滞后1个月和2个月的气象影响。结果表明,2023年9月发现的登革热病例数最多(79,598例)。自相关显示在滞后1个月和2个月时存在强正相关。来自预测模型的2024 - 2027年预测表明,登革热病例每年将在10,000至20,000例之间波动。斯皮尔曼等级相关性表明登革热病例与降水量、温度、风速和湿度之间存在显著正相关。多变量泊松回归显示温度(°C)(发病率比 = 1.02)、湿度(%)(发病率比 = 1.25)和风速(m/s)(发病率比 = 1.10)显著增加了登革热发病率。在多元SARIMA、XGBoost和泊松回归之间,表现最佳的模型是ARIMA(均方根误差:5058.066)。总之,该研究强调了气候因素对孟加拉国登革热动态的重大影响,强调需要将气象数据纳入早期预警系统,并制定适应性的、基于气候的控制和监测策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0c5/12360610/bc8a61e7f36b/pone.0323238.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验