Zhu Xiang, Khan Mustaqeem, Taleb-Ahmed Abdelmalik, Othmani Alice
Laboratoire Images, Signaux et Systémes Intelligents (LiSSi), Université Paris Est Créteil (UPEC), Paris, France.
College of Information Technology, United Arab Emirates University (UAEU), Abu Dhabi, United Arab Emirates.
PLoS One. 2025 Aug 18;20(8):e0329606. doi: 10.1371/journal.pone.0329606. eCollection 2025.
Efficient medical question answering is essential for better patient care. Despite progress since Eliza (1966), even advanced LLMs (e.g., GPT-4) struggle with medical data. This study presents a system combining knowledge embedding and transformers. It includes a knowledge understanding layer and an answer generation layer. Tested on the MedQA dataset, it achieved 82.92% accuracy, outperforming GPT-4's 71.07%. The results demonstrate the system's ability to deliver accurate and ethical answers. This integrated method improves response speed and quality. Future work will enhance precision, support patient interaction, and integrate multimodal data for improved healthcare query processing.
高效的医学问答对于提供更好的患者护理至关重要。尽管自伊莉莎(1966年)以来取得了进展,但即使是先进的语言模型(如GPT-4)在处理医学数据时也面临困难。本研究提出了一种将知识嵌入和Transformer相结合的系统。它包括一个知识理解层和一个答案生成层。在MedQA数据集上进行测试时,该系统的准确率达到了82.92%,超过了GPT-4的71.07%。结果证明了该系统提供准确且符合伦理的答案的能力。这种集成方法提高了响应速度和质量。未来的工作将提高精度、支持患者互动,并整合多模态数据以改进医疗保健查询处理。