Xiao Yang, Soares Guilherme, Bastos Leonardo, Izbicki Rafael, Moraga Paula
Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
Institute of Mathematical and Computer Sciences, University of São Paulo (USP), São Carlos, Brazil.
PLoS Negl Trop Dis. 2025 Aug 18;19(8):e0012501. doi: 10.1371/journal.pntd.0012501. eCollection 2025 Aug.
Dengue is a mosquito-borne viral disease that poses significant public health challenges in tropical and sub-tropical regions worldwide. Surveillance systems are essential for dengue prevention and control. However, traditional systems often rely on delayed data, limiting their effectiveness. To address this, nowcasting methods are needed to estimate underreported cases, enabling more timely decision-making. This study evaluates the value of using Google Trends indices of dengue-related keywords to complement official dengue data for nowcasting dengue in Brazil, a country frequently affected by this disease. We compare various nowcasting approaches that incorporate autoregressive features from official dengue cases, Google Trends data, and a combination of both, using a naive approach as a baseline. The performance of these methods is evaluated by nowcasting weekly dengue cases from March 2024 to January 2025 across Brazilian states. Error measures and 50% and 95% coverage probabilities reveal that models incorporating Google Trends data enhance the accuracy of weekly nowcasts across states and offer valuable insights into dengue activity levels. To support real-time decision-making, we also present Dengue Tracker, a website that displays weekly dengue nowcasts and trends to inform both decision-makers and the public, improving situational awareness of dengue activity. In conclusion, the study demonstrates the value of digital data sources in enhancing dengue nowcasting, and emphasizes the value of integrating alternative data streams into traditional surveillance systems for better-informed decision-making.
登革热是一种由蚊子传播的病毒性疾病,在全球热带和亚热带地区构成重大的公共卫生挑战。监测系统对于登革热的预防和控制至关重要。然而,传统系统往往依赖延迟的数据,限制了它们的有效性。为了解决这个问题,需要临近预报方法来估计漏报病例,以便能做出更及时的决策。本研究评估了利用与登革热相关关键词的谷歌趋势指数来补充官方登革热数据,以对巴西(一个经常受这种疾病影响的国家)的登革热进行临近预报的价值。我们比较了各种临近预报方法,这些方法纳入了官方登革热病例、谷歌趋势数据以及两者结合的自回归特征,并将一种简单方法作为基线。通过对巴西各州2024年3月至2025年1月的每周登革热病例进行临近预报来评估这些方法的性能。误差度量以及50%和95%的覆盖概率表明,纳入谷歌趋势数据的模型提高了各州每周临近预报的准确性,并提供了有关登革热活动水平的宝贵见解。为了支持实时决策,我们还推出了登革热追踪器网站,该网站展示每周登革热临近预报和趋势,为决策者和公众提供信息,提高对登革热活动的态势感知。总之,该研究证明了数字数据源在增强登革热临近预报方面的价值,并强调了将替代数据流整合到传统监测系统中以做出更明智决策的价值。