Suppr超能文献

贝叶斯平滑的实时预测:一种用于实时传染病追踪的灵活、可推广的模型。

Nowcasting by Bayesian Smoothing: A flexible, generalizable model for real-time epidemic tracking.

机构信息

Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America.

Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico.

出版信息

PLoS Comput Biol. 2020 Apr 6;16(4):e1007735. doi: 10.1371/journal.pcbi.1007735. eCollection 2020 Apr.

Abstract

Achieving accurate, real-time estimates of disease activity is challenged by delays in case reporting. "Nowcast" approaches attempt to estimate the complete case counts for a given reporting date, using a time series of case reports that is known to be incomplete due to reporting delays. Modeling the reporting delay distribution is a common feature of nowcast approaches. However, many nowcast approaches ignore a crucial feature of infectious disease transmission-that future cases are intrinsically linked to past reported cases-and are optimized to one or two applications, which may limit generalizability. Here, we present a Bayesian approach, NobBS (Nowcasting by Bayesian Smoothing) capable of producing smooth and accurate nowcasts in multiple disease settings. We test NobBS on dengue in Puerto Rico and influenza-like illness (ILI) in the United States to examine performance and robustness across settings exhibiting a range of common reporting delay characteristics (from stable to time-varying), and compare this approach with a published nowcasting software package while investigating the features of each approach that contribute to good or poor performance. We show that introducing a temporal relationship between cases considerably improves performance when the reporting delay distribution is time-varying, and we identify trade-offs in the role of moving windows to accurately capture changes in the delay. We present software implementing this new approach (R package "NobBS") for widespread application and provide practical guidance on implementation.

摘要

准确、实时地估计疾病活动度受到病例报告延迟的挑战。“即时预测”方法试图使用已知因报告延迟而不完整的病例报告时间序列来估计给定报告日期的完整病例数。对报告延迟分布进行建模是即时预测方法的常见特征。然而,许多即时预测方法忽略了传染病传播的一个关键特征,即未来病例与过去报告的病例内在相关,并且针对一两个应用进行了优化,这可能限制了其通用性。在这里,我们提出了一种贝叶斯方法 NobBS(基于贝叶斯平滑的即时预测),能够在多种疾病环境中生成平滑且准确的即时预测。我们在波多黎各的登革热和美国的流感样疾病(ILI)上测试 NobBS,以检查在表现出一系列常见报告延迟特征(从稳定到时变)的不同环境中的性能和稳健性,并在研究每种方法的特性时将这种方法与已发表的即时预测软件包进行比较,这些特性有助于提高或降低性能。我们表明,当报告延迟分布是时变时,引入病例之间的时间关系可以大大提高性能,并且我们确定了移动窗口在准确捕捉延迟变化中的作用的权衡。我们提出了实现这种新方法的软件(R 包“NobBS”),以供广泛应用,并提供实施方面的实用指南。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/414a/7162546/4424457c5d7e/pcbi.1007735.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验