Suppr超能文献

用于阿尔茨海默病分子机制的不完整多组学数据深度融合

Deep fusion of incomplete multi-omic data for molecular mechanism of Alzheimer's disease.

作者信息

Xie Linhui, Raj Yash, Tong Mingzhao, Nho Kwangsik, Salama Paul, Saykin Andrew J, Fang Shiaofen, Yan Jingwen

机构信息

Purdue University, Indianapolis, Department of Electrical and Computer Engineering, Indianapolis, 46204, U.S.

Indiana University, Indianapolis, Department of Biomedical Engineering and Informatics, Indianapolis, 46204, U.S.

出版信息

Sci Rep. 2025 Aug 18;15(1):30182. doi: 10.1038/s41598-025-14636-2.

Abstract

Multi-omics data provides a comprehensive view of biological systems and enables researchers to uncover intricate molecular mechanisms underlying complex diseases. However, multi-omic data is often incomplete and joint modeling of multi-omics data will lead to exclusion of a large portion of subjects. Furthermore, most current multi-omics studies pinpoint individual -omics markers, which may not interact, posing challenges for interpretation. In this study, we developed an interpretable deep trans-omic fusion neural network, TransFuse, to include incomplete -omic data for training of prediction models. When evaluated using the data from two Alzheimer's disease cohorts, TransFuse generally showed superior or comparable performance over competing methods in a wide range of metrics like classification accuracy and F1 score. In addition, TransFuse yielded a subset of multi-omics features forming functional disease network modules, providing valuable insights into underlying molecular mechanism. In addition, almost all the genetic variants identified by TransFuse are expression quantitative trait locus (eQTLs) specific to frontal cortex tissue, from which the gene and protein expression data were collected. This highlights the great potential of TransFuse in capturing the tissue-specific information flow. Top pathways enriched include VEGF and EPH pathways, both influencing neural development and synaptic formation.

摘要

多组学数据提供了生物系统的全面视图,使研究人员能够揭示复杂疾病背后错综复杂的分子机制。然而,多组学数据往往不完整,对多组学数据进行联合建模会导致大量受试者被排除。此外,目前大多数多组学研究都确定了单个组学标记,这些标记可能不会相互作用,这给解释带来了挑战。在本研究中,我们开发了一种可解释的深度跨组学融合神经网络TransFuse,以纳入不完整的组学数据来训练预测模型。当使用来自两个阿尔茨海默病队列的数据进行评估时,在分类准确率和F1分数等广泛指标上,TransFuse总体上表现优于或与竞争方法相当。此外,TransFuse产生了一组形成功能性疾病网络模块的多组学特征,为潜在的分子机制提供了有价值的见解。此外,TransFuse识别出的几乎所有遗传变异都是额叶皮质组织特有的表达数量性状位点(eQTL),基因和蛋白质表达数据就是从该组织收集的。这突出了TransFuse在捕捉组织特异性信息流方面的巨大潜力。富集的顶级通路包括VEGF和EPH通路,两者都影响神经发育和突触形成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa4a/12361453/6d8f0996cf2e/41598_2025_14636_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验