Zhang Jing, Wang Wenqi, Hao Sanwei, Zhu Hongnan, Wang Chao, Hu Zhouyang, Yu Yaru, Wang Fangqing, Fu Peng, Shao Changyou, Yang Jun, Cong Hailin
School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, People's Republic of China.
School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, People's Republic of China.
Nanomicro Lett. 2025 Aug 19;18(1):34. doi: 10.1007/s40820-025-01879-x.
A rapidly growing field is piezoresistive sensor for accurate respiration rate monitoring to suppress the worldwide respiratory illness. However, a large neglected issue is the sensing durability and accuracy without interference since the expiratory pressure always coupled with external humidity and temperature variations, as well as mechanical motion artifacts. Herein, a robust and biodegradable piezoresistive sensor is reported that consists of heterogeneous MXene/cellulose-gelation sensing layer and Ag-based interdigital electrode, featuring customizable cylindrical interface arrangement and compact hierarchical laminated architecture for collectively regulating the piezoresistive response and mechanical robustness, thereby realizing the long-term breath-induced pressure detection. Notably, molecular dynamics simulations reveal the frequent angle inversion and reorientation of MXene/cellulose in vacuum filtration, driven by shear forces and interfacial interactions, which facilitate the establishment of hydrogen bonds and optimize the architecture design in sensing layer. The resultant sensor delivers unprecedented collection features of superior stability for off-axis deformation (0-120°, ~ 2.8 × 10 A) and sensing accuracy without crosstalk (humidity 50%-100% and temperature 30-80 °C). Besides, the sensor-embedded mask together with machine learning models is achieved to train and classify the respiration status for volunteers with different ages (average prediction accuracy ~ 90%). It is envisioned that the customizable architecture design and sensor paradigm will shed light on the advanced stability of sustainable electronics and pave the way for the commercial application in respiratory monitory.
一个迅速发展的领域是用于精确监测呼吸速率以抑制全球范围内呼吸道疾病的压阻式传感器。然而,一个被大量忽视的问题是在无干扰情况下的传感耐久性和准确性,因为呼气压力总是与外部湿度和温度变化以及机械运动伪影相关联。在此,报道了一种坚固且可生物降解的压阻式传感器,它由异质的MXene/纤维素凝胶传感层和银基叉指电极组成,具有可定制的圆柱形界面排列和紧凑的分层叠层结构,用于共同调节压阻响应和机械坚固性,从而实现长期的呼吸诱导压力检测。值得注意的是,分子动力学模拟揭示了在真空过滤过程中,受剪切力和界面相互作用驱动,MXene/纤维素频繁发生角度反转和重新取向,这有助于建立氢键并优化传感层的结构设计。所得传感器具有前所未有的采集特性,对于离轴变形(0 - 120°,约2.8×10 A)具有卓越的稳定性且传感准确性无串扰(湿度50% - 100%,温度30 - 80°C)。此外,实现了嵌入传感器的口罩与机器学习模型相结合,用于对不同年龄志愿者的呼吸状态进行训练和分类(平均预测准确率约90%)。可以预见,可定制的结构设计和传感器范例将为可持续电子产品的先进稳定性提供启示,并为呼吸监测的商业应用铺平道路。