Kubica Jędrzej, Korsak Sevastianos, Banecki Krzysztof H, Schirman Dvir, Yadavalli Anurupa Devi, Brenner Clerkin Ariana, Kouřil David, Kadlof Michał, Busby Ben, Plewczynski Dariusz
Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Warsaw, Poland.
Univ. Grenoble Alpes, CNRS, UMR, TIMC/ MAGe, Grenoble, France.
PLoS Comput Biol. 2025 Aug 19;21(8):e1013358. doi: 10.1371/journal.pcbi.1013358. eCollection 2025 Aug.
The computational modeling of chromatin structure is highly complex due to the hierarchical organization of chromatin, which reflects its diverse biophysical principles, as well as inherent dynamism, which underlies its complexity. Chromatin structure modeling can be based on diverse approaches and assumptions, making it essential to determine how different methods influence the modeling outcomes. We conducted a project at the NIH-funded 4D Nucleome Hackathon on March 18-21, 2024, at The University of Washington in Seattle, USA. The hackathon provided an amazing opportunity to gather an international, multi-institutional and unbiased group of experts to discuss, understand and undertake the challenges of chromatin model comparison and validation. Here we give an overview of the current state of the 3D chromatin field and discuss our efforts to run and validate the models. We used distance matrices to represent chromatin models and we calculated Spearman correlation coefficients to estimate differences between models, as well as between models and experimental data. In addition, we discuss challenges in chromatin structure modeling that include: 1) different aspects of chromatin biophysics and scales complicate model comparisons, 2) large diversity of experimental data (e.g., population-based, single-cell, protein-specific) that differ in mathematical properties, heatmap smoothness, noise and resolutions complicates model validation, 3) expertise in biology, bioinformatics, and physics is necessary to conduct comprehensive research on chromatin structure, 4) bioinformatic software, which is often developed in academic settings, is characterized by insufficient support and documentation. We also emphasize the importance of establishing guidelines for software development and standardization.
由于染色质的层次结构,其反映了多种生物物理原理,以及作为其复杂性基础的内在动态性,染色质结构的计算建模极具复杂性。染色质结构建模可以基于多种方法和假设,因此确定不同方法如何影响建模结果至关重要。我们于2024年3月18日至21日在美国西雅图华盛顿大学举办了由美国国立卫生研究院资助的4D核体黑客马拉松项目。这次黑客马拉松提供了一个绝佳的机会,聚集了一个国际化、多机构且公正的专家团队,来讨论、理解并应对染色质模型比较和验证的挑战。在此,我们概述三维染色质领域的当前状况,并讨论我们运行和验证模型的努力。我们使用距离矩阵来表示染色质模型,并计算斯皮尔曼相关系数以估计模型之间以及模型与实验数据之间的差异。此外,我们讨论了染色质结构建模中的挑战,包括:1)染色质生物物理学的不同方面和尺度使模型比较变得复杂,2)实验数据(例如基于群体的、单细胞的、蛋白质特异性的)在数学性质、热图平滑度、噪声和分辨率方面存在很大差异,这使模型验证变得复杂,3)进行染色质结构的全面研究需要生物学、生物信息学和物理学方面的专业知识,4)生物信息软件通常是在学术环境中开发的,其特点是支持和文档不足。我们还强调了建立软件开发指南和标准化的重要性。