Goldbach Felix, Gerendas Bianca S, Leingang Oliver, Alten Thomas, Bampoulidis Alexandros, Brugger Jonas, Bogunovic Hrvoje, Sadeghipour Amir, Schmidt-Erfurth Ursula
Department of Ophthalmology and Optometry, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, 1090, Austria.
RetInSight, Vienna, Austria.
Sci Rep. 2025 Aug 19;15(1):30414. doi: 10.1038/s41598-025-13019-x.
This study compared an automated deep learning algorithm with certified human graders from the Vienna Reading Center (VRC) in identifying intra- (IRF) and subretinal fluid (SRF) in OCT scans of patients treated for neovascular age-related macular degeneration (nAMD), diabetic macular edema (DME) and branch retinal vein occlusion (BRVO). Multicenter clinical trial data from the VRC imaging database was used for this post hoc analysis. OCT scans were analyzed using a validated algorithm (RetInSight, Vienna, Austria) to compute IRF and SRF volumes. These fluid volumes were compared to fluid presence graded by trained and experienced graders of the VRC. 6898 OCT scans were analyzed for fluid volumes and presence of IRF and SRF. For nAMD/DME /BRVO in the central millimeter: the overall concordance for the detection of IRF and SRF between the algorithm and manual grading reached an AUC of 0.94/0.92/0.98 and 0.89/0.95/0.92, respectively. This deep learning approach showed a high concordance with human expert grading for detection of IRF and SRF and provides precise volumetric information across different retinal fluid-associated diseases. Thus, automated fluid quantification is a feasible tool for standardized treatment decision support and disease monitoring in clinical practice at the highest human expert level.
本研究比较了一种自动化深度学习算法与维也纳阅读中心(VRC)的认证人工分级员,在识别接受新生血管性年龄相关性黄斑变性(nAMD)、糖尿病性黄斑水肿(DME)和视网膜分支静脉阻塞(BRVO)治疗患者的OCT扫描中的视网膜内液(IRF)和视网膜下液(SRF)方面的表现。来自VRC成像数据库的多中心临床试验数据用于此次事后分析。使用经过验证的算法(RetInSight,奥地利维也纳)分析OCT扫描,以计算IRF和SRF体积。将这些液体体积与VRC训练有素且经验丰富的分级员所分级的液体存在情况进行比较。对6898次OCT扫描进行了液体体积以及IRF和SRF存在情况的分析。对于中央毫米范围内的nAMD/DME/BRVO:算法与人工分级在检测IRF和SRF方面的总体一致性分别达到了AUC为0.94/0.92/0.98和0.89/0.95/0.92。这种深度学习方法在检测IRF和SRF方面与人类专家分级显示出高度一致性,并能提供不同视网膜液体相关疾病的精确体积信息。因此,自动化液体定量分析是一种可行的工具,可在最高人类专家水平上为临床实践中的标准化治疗决策支持和疾病监测提供帮助。