Gualino Vincent, Sohier Charles, Sibert Maxime, Erginay Ali, Varenne Fanny, Butterworth Jacqueline, Couturier Aude, Gabrielle Pierre-Henry, Soler Vincent, Creuzot-Garcher Catherine
Ophthalmology Department, Pierre-Paul Riquet Hospital, Toulouse University Hospital, Toulouse, France.
Clinique Honoré Cave, Montauban, France.
BMJ Open Ophthalmol. 2025 Jun 23;10(1):e002267. doi: 10.1136/bmjophth-2025-002267.
Some patients with neovascular age-related macular degeneration (nAMD) have persistent signs of exudation under treatment with intravitreal injections of anti-vascular endothelial growth factor (VEGF) agents. We examined the real-world anatomical responses among patients with suboptimal response and switched to faricimab using artificial intelligence (AI)-based retinal fluid quantification.
A retrospective, multicentric, cohort study of patients in France with exudative signs and switched to faricimab without a new loading phase, maintaining the same prior injection interval. The RetInSight Fluid Monitor AI software quantified subretinal (SRF) and intraretinal (IRF) fluid on spectral domain optical coherence tomography. The primary outcome was change in SRF and IRF volumes in the central 1 and 6 mm retinal areas after one and two injections of faricimab.
74 patients (74 eyes) were included (mean age: 81.5±8.4 years, 49% male). Significant reductions were observed in mean 1 mm IRF (-2.9±18.3 nl; p=0.002), mean 6 mm IRF (-17.7±71.1 nl; p<0.001) and mean 6 mm SRF (-24.8±156.3 nl; p<0.001) volumes after one injection. The proportion of dry eyes (<5 nl for SRF and IRF in the 1 and 6 mm areas) increased from 0% at baseline to 32.4% after one injection and 48.4% after two injections. Lower baseline SRF volumes were predictive of dry response after one injection (OR 0.965; p=0.028) and lower baseline IRF volumes were predictive of dry response after two injections (OR 0.373; p=0.051).
Nearly half of patients achieved a dry response after two injections. AI-assisted fluid quantification provided objective monitoring, identifying lower baseline SRF and IRF as predictive factors for good response. Limited patient inclusion means longer-term and larger prospective studies are now required using automated retinal fluid quantification to further refine the baseline characteristics of good switch responders to better adapt switch protocols.
一些患有新生血管性年龄相关性黄斑变性(nAMD)的患者在接受玻璃体内注射抗血管内皮生长因子(VEGF)药物治疗时,仍有持续的渗出迹象。我们使用基于人工智能(AI)的视网膜液定量分析方法,研究了反应欠佳并改用faricimab治疗的患者在现实世界中的解剖学反应。
一项对法国有渗出体征且未经过新的负荷期而改用faricimab且保持相同先前注射间隔的患者进行的回顾性、多中心队列研究。RetInSight Fluid Monitor AI软件在光谱域光学相干断层扫描上对视网膜下(SRF)和视网膜内(IRF)液进行定量分析。主要结局是在注射一剂和两剂faricimab后,中央1毫米和6毫米视网膜区域内SRF和IRF体积的变化。
纳入74例患者(74只眼)(平均年龄:81.5±8.4岁,49%为男性)。注射一剂后,平均1毫米IRF(-2.9±18.3纳升;p=0.002)、平均6毫米IRF(-17.7±71.1纳升;p<0.001)和平均6毫米SRF(-24.8±156.3纳升;p<0.001)体积均有显著减少。无液眼(1毫米和6毫米区域内SRF和IRF<5纳升)的比例从基线时的0%增加到注射一剂后的32.4%和注射两剂后的48.4%。较低的基线SRF体积可预测注射一剂后的无液反应(OR 0.965;p=0.028),较低的基线IRF体积可预测注射两剂后的无液反应(OR 0.373;p=0.051)。
近一半的患者在注射两剂后达到无液反应。AI辅助的液定量分析提供了客观监测,确定较低的基线SRF和IRF是良好反应的预测因素。纳入患者数量有限意味着现在需要使用自动视网膜液定量分析进行更长期、更大规模的前瞻性研究,以进一步完善良好转换反应者的基线特征,从而更好地调整转换方案。