Suppr超能文献

通过纤维化的3D水凝胶模型解码心脏成纤维细胞中的机械敏感基因。

Decoding mechanosensitive genes in cardiac fibroblasts via 3D hydrogel models of fibrosis.

作者信息

Chen Heng, Chen Yuxiao, Yang Jinan, Yang Peng, Cheng Hongqiang, Guo Xiaogang

机构信息

Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, China.

College of Life Sciences, Wuhan University, Wuhan, China.

出版信息

Sci Rep. 2025 Aug 20;15(1):30484. doi: 10.1038/s41598-025-16708-9.

Abstract

Cardiac fibrosis arises from the abnormal activation of cardiac fibroblasts (CFs) in response to both chemical and mechanical stressors. While extracellular matrix (ECM) stiffness is a key determinant of fibroblast behavior, the molecular mechanisms linking mechanical signals to gene expression remain poorly understood. To address this gap, we developed a three-dimensional (3D) hydrogel system that mimics the ECM stiffness of normal, mid-stage, and fibrotic myocardium. Using RNA sequencing, we identified mechanosensitive genes in CFs cultured within this system. Weighted gene co-expression network analysis (WGCNA) revealed a 98-gene cluster, encompassing PCSK6, ATP8B4, THBS2, and DCN, among others, which was significantly upregulated across stiffness gradients. Single-cell RNA sequencing from myocardial infarction and pressure overload-induced cardiac fibrosis models validated the mechanosensitivity of these genes, uncovering distinct temporal expression patterns under acute versus chronic mechanical stress. Notably, the marked upregulation of this gene cluster in human dilated and hypertrophic cardiomyopathy samples underscores its clinical relevance. Functional assays confirmed the crucial roles of THBS2 and DCN in fibroblast activation. Collectively, our findings deepen the understanding of the mechanobiology underlying cardiac fibrosis and highlight potential diagnostic markers and therapeutic targets for modulating mechanical stress in this pathological condition.

摘要

心脏纤维化源于心脏成纤维细胞(CFs)在化学和机械应激源作用下的异常激活。虽然细胞外基质(ECM)硬度是成纤维细胞行为的关键决定因素,但将机械信号与基因表达联系起来的分子机制仍知之甚少。为了填补这一空白,我们开发了一种三维(3D)水凝胶系统,该系统模拟正常、中期和纤维化心肌的ECM硬度。通过RNA测序,我们在该系统中培养的CFs中鉴定出机械敏感基因。加权基因共表达网络分析(WGCNA)揭示了一个包含PCSK6、ATP8B4、THBS2和DCN等在内的98个基因的簇,该簇在不同硬度梯度下均显著上调。来自心肌梗死和压力超负荷诱导的心脏纤维化模型的单细胞RNA测序验证了这些基因的机械敏感性,揭示了急性与慢性机械应激下不同的时间表达模式。值得注意的是,该基因簇在人类扩张型和肥厚型心肌病样本中的显著上调突出了其临床相关性。功能分析证实了THBS2和DCN在成纤维细胞激活中的关键作用。总的来说,我们的研究结果加深了对心脏纤维化潜在机械生物学的理解,并突出了在这种病理状态下调节机械应激的潜在诊断标志物和治疗靶点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验