Agarwala Pratibha, Sasmal Dibyendu K
Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, RJ, India.
Curr Protoc. 2025 Aug;5(8):e70165. doi: 10.1002/cpz1.70165.
Total internal reflection fluorescence (TIRF) microscopy enables the observation of complex bioassemblies and macromolecular dynamics in high spatial-temporal resolution at the single-molecule level in real time. Through TIRF illumination, fluorophores near a sample substrate are selectively excited within an evanescent field, thereby overcoming the axial diffraction limit of light. Prism-based TIRF (p-TIRF) microscopes are relatively straightforward to construct and can be readily adapted to accommodate a wide range of experimental applications, including the examination of macromolecular complexes, the study of the behavior of vesicles and small organelles, and the investigation of protein-DNA complexes at the single-molecule level. These experiments can give unique insights into the mechanisms driving the molecular interactions that underline many fundamental activities within the cell by providing information on fluctuation distributions and unusual events. In this paper, we present a detailed and cost-effective protocol for constructing a p-TIRF setup using an existing confocal microscope, utilizing the same light source for both modalities. Additionally, we provide a step-by-step tutorial on building, assembling, and aligning the p-TIRF setup and preparing the sample for single-molecule fluorescence resonance energy transfer (smFRET) experiments. This article will be particularly helpful for laboratories equipped with a confocal microscope seeking to expand their experimental capabilities by integrating TIRF-based approaches. © 2025 Wiley Periodicals LLC. Basic Protocol: Microscopy setup for TIRF Support Protocol 1: Construction of prism holder and prism holder carrier arm Support Protocol 2: Preparation of sample chamber with sample Support Protocol 3: Slide preparation and KOH etching Support Protocol 4: Preparation of biotinylated DNA Holliday junctions immobilized on slides Support Protocol 5: Preparation of DNA Holliday junctions.
全内反射荧光(TIRF)显微镜能够在单分子水平上实时以高时空分辨率观察复杂的生物组装体和大分子动力学。通过TIRF照明,样品底物附近的荧光团在倏逝场内被选择性激发,从而克服了光的轴向衍射极限。基于棱镜的TIRF(p-TIRF)显微镜相对容易构建,并且可以很容易地进行改装以适应广泛的实验应用,包括检查大分子复合物、研究囊泡和小细胞器的行为以及在单分子水平上研究蛋白质-DNA复合物。这些实验通过提供有关波动分布和异常事件的信息,可以对驱动分子相互作用的机制提供独特的见解,这些分子相互作用是细胞内许多基本活动的基础。在本文中,我们提出了一种详细且经济高效的方案,用于使用现有的共聚焦显微镜构建p-TIRF装置,两种模式使用相同的光源。此外,我们提供了一个关于构建、组装和对准p-TIRF装置以及为单分子荧光共振能量转移(smFRET)实验准备样品的分步教程。本文对于配备共聚焦显微镜的实验室特别有帮助,这些实验室希望通过整合基于TIRF的方法来扩展其实验能力。© 2025威利期刊有限责任公司。基本方案:TIRF显微镜设置 支持方案1:棱镜支架和棱镜支架承载臂的构建 支持方案2:带有样品的样品室的制备 支持方案3:载玻片制备和KOH蚀刻 支持方案4:固定在载玻片上的生物素化DNA霍利迪连接体的制备 支持方案5:DNA霍利迪连接体的制备