Suppr超能文献

利用生成对抗网络改进合成低温电子显微镜密度图

: improving synthetic cryogenic electron microscopy density maps with generative adversarial networks.

作者信息

Zhang Chenwei, Condon Anne, Dao Duc Khanh

机构信息

Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.

Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada.

出版信息

Bioinform Adv. 2025 Aug 4;5(1):vbaf179. doi: 10.1093/bioadv/vbaf179. eCollection 2025.

Abstract

MOTIVATION

Generating synthetic cryogenic electron microscopy 3D density maps from molecular structures has potential important applications in structural biology. Yet existing simulation-based methods cannot mimic all the complex features present in experimental maps, such as secondary structure elements. As an alternative, we propose

RESULTS

is a novel data-driven method that employs a generative adversarial network to produce improved experimental-like density maps from molecular structures. More specifically, uses a nested U-Net architecture as the generator, with an additional L1 loss term and further processing of raw training experimental maps to enhance learning efficiency. While can promptly generate maps after training, we demonstrate that it outperforms existing simulation-based methods for a wide array of tested maps and across various evaluation metrics.

AVAILABILITY AND IMPLEMENTATION

The is publicly accessible via https://github.com/chenwei-zhang/struc2mapGAN.

摘要

动机

从分子结构生成合成低温电子显微镜3D密度图在结构生物学中具有潜在的重要应用。然而,现有的基于模拟的方法无法模拟实验图中存在的所有复杂特征,例如二级结构元件。作为一种替代方法,我们提出

结果

是一种新颖的数据驱动方法,它采用生成对抗网络从分子结构生成改进的类似实验的密度图。更具体地说,使用嵌套U-Net架构作为生成器,带有额外的L1损失项,并对原始训练实验图进行进一步处理以提高学习效率。虽然在训练后可以迅速生成图,但我们证明,在各种测试图和不同评估指标上,它优于现有的基于模拟的方法。

可用性和实现

可通过https://github.com/chenwei-zhang/struc2mapGAN公开访问。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdb9/12360846/1b32ea6368c5/vbaf179f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验