Suppr超能文献

标准化均数差:终究并非那么标准化

Standardized Mean Differences: No So Standard After All.

作者信息

Jung Juyoung, Aloe Ariel M

机构信息

Educational Measurement and Statistics University of Iowa Iowa City Iowa USA.

出版信息

Campbell Syst Rev. 2025 Aug 17;21(3):e70056. doi: 10.1002/cl2.70056. eCollection 2025 Sep.

Abstract

Meta-analyses often use standardized mean differences (SMDs), such as Cohen's and Hedges' , to compare treatment effects. However, these SMDs are highly sensitive to the within-study sample variability used for their standardization, potentially distorting individual effect size estimates and compromising overall meta-analytic conclusions. This study introduces harmonized standardized mean differences (HSMDs), a novel sensitivity analysis framework designed to systematically evaluate and address such distortions. The HSMD harmonizes relative within-study variability across studies by employing the coefficient of variation (CV) to establish empirical benchmarks (e.g., CV quartiles). SMDs are then recalculated under these consistent variability assumptions. Applying this framework to Meta-analytic data reveals the extent to which (original) effect sizes and pooled results are influenced by initial, study-specific standard deviations to standardize mean differences. Furthermore, the method facilitates the inclusion of studies lacking reported variability metrics into the sensitivity analysis, enhancing the comprehensiveness of the meta-analytic synthesis.

摘要

元分析通常使用标准化均值差(SMD),如科恩d值和赫奇斯g值,来比较治疗效果。然而,这些标准化均值差对用于其标准化的研究内样本变异性高度敏感,可能会扭曲个体效应大小估计,并损害整体元分析结论。本研究引入了协调标准化均值差(HSMD),这是一个新的敏感性分析框架,旨在系统地评估和解决此类扭曲问题。HSMD通过使用变异系数(CV)建立经验基准(如CV四分位数)来协调各研究之间的相对研究内变异性。然后在这些一致的变异性假设下重新计算标准化均值差。将该框架应用于元分析数据,可以揭示(原始)效应大小和合并结果受初始的、特定研究的标准差影响以标准化均值差的程度。此外,该方法有助于将缺乏报告的变异性指标的研究纳入敏感性分析,提高元分析综合的全面性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39bb/12358740/e97f79e63288/CL2-21-e70056-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验