Hevler Johannes F, Verma Shivam, Soijtra Mirat, Bertozzi Carolyn R
Department of Chemistry, School of Humanities and Sciences, Stanford University, Stanford, CA 94305, USA.
Stanford Chem-H, Stanford University, Stanford, CA 94305, USA.
ArXiv. 2025 Aug 13:arXiv:2508.09659v1.
Thermal Tracks is a Python-based statistical framework for analyzing protein thermal stability data that overcomes key limitations of existing thermal proteome profiling (TPP) workflows. Unlike standard approaches that assume sigmoidal melting curves and are constrained by empirical null distributions (limiting significant hits to ∼5% of data), Thermal Tracks uses Gaussian Process (GP) models with squared-exponential kernels to flexibly model any melting curve shape while generating unbiased null distributions through kernel priors. This framework is particularly valuable for analyzing proteome-wide perturbations that significantly alter protein thermal stability, such as pathway inhibitions, genetic modifications, or environmental stresses, where conventional TPP methods may miss biologically relevant changes due to their statistical constraints. Furthermore, Thermal Tracks excels at analyzing proteins with unconventional melting profiles, including phase-separating proteins and membrane proteins, which often exhibit complex, non-sigmoidal thermal stability behaviors. Thermal Tracks is freely available from GitHub and is implemented in Python, providing an accessible and flexible tool for proteome-wide thermal profiling studies.
“热轨迹”是一个基于Python的统计框架,用于分析蛋白质热稳定性数据,它克服了现有热蛋白质组分析(TPP)工作流程的关键局限性。与假设呈S形熔解曲线并受经验性零分布约束(将显著命中限制在约5%的数据)的标准方法不同,“热轨迹”使用具有平方指数核的高斯过程(GP)模型来灵活地对任何熔解曲线形状进行建模,同时通过核先验生成无偏零分布。该框架对于分析显著改变蛋白质热稳定性的全蛋白质组扰动特别有价值,例如通路抑制、基因修饰或环境应激,在这些情况下,传统的TPP方法可能由于其统计约束而错过生物学相关的变化。此外,“热轨迹”擅长分析具有非常规熔解曲线的蛋白质,包括相分离蛋白质和膜蛋白,这些蛋白质通常表现出复杂的、非S形的热稳定性行为。“热轨迹”可从GitHub免费获取,并以Python实现,为全蛋白质组热分析研究提供了一个易于使用且灵活的工具。