Barny Lea A, Garcia Sarah K, Houcek Aiden J, Uzay Burak, Kim Minsoo, Kavalali Ege T, Plate Lars
Chemical and Physical Biology Program, Vanderbilt University Medical Center, Nashville, TN, USA.
Department of Chemistry, Vanderbilt University, Nashville, TN, USA.
bioRxiv. 2025 Aug 13:2025.08.11.669714. doi: 10.1101/2025.08.11.669714.
Proteostasis, or protein homeostasis, is a tightly regulated network of cellular pathways essential for maintaining proper protein folding, trafficking, and degradation. Neurons are particularly vulnerable to proteostasis collapse due to their post-mitotic and long-lived nature and thus represent a unique cell type to understand the dynamics of proteostasis throughout development, maturation, and aging. Here, we utilized a dual-species co-culture model of human excitatory neurons and mouse glia to investigate cell type-specific, age-related changes in the proteostasis network using data-independent acquisition (DIA) LC-MS/MS proteomics. We quantified branch-specific unfolded protein response (UPR) activation by monitoring curated effector proteins downstream of the ATF6, IRE1/XBP1s, and PERK pathways, enabling a comprehensive, unbiased evaluation of UPR dynamics during neuronal aging. Species-specific analysis revealed that aging neurons largely preserved proteostasis, although they showed some signs of collapse, primarily in ER-to-Golgi transport mechanisms. However, these changes were accompanied by upregulation of proteostasis-related machinery and activation of the ATF6 branch, as well as maintenance of the XBP1s and PERK branches of the UPR with age. In contrast, glia exhibited broad downregulation of proteostasis factors and UPR components, independent of neuronal presence. Furthermore, we quantified stimulus-specific modulation of select UPR branches in aged neurons exposed to pharmacologic ER stressors. These findings highlight distinct, cell-type-specific stress adaptations during aging and provide a valuable proteomic resource for dissecting proteostasis and UPR regulation in the aging brain.
蛋白质稳态,即蛋白质平衡,是一个受到严格调控的细胞通路网络,对于维持蛋白质的正确折叠、运输和降解至关重要。神经元因其有丝分裂后和长寿的特性,特别容易受到蛋白质稳态崩溃的影响,因此是研究蛋白质稳态在整个发育、成熟和衰老过程中动态变化的独特细胞类型。在这里,我们利用人类兴奋性神经元和小鼠胶质细胞的双物种共培养模型,通过数据非依赖采集(DIA)液相色谱-串联质谱(LC-MS/MS)蛋白质组学技术,研究蛋白质稳态网络中细胞类型特异性的、与年龄相关的变化。我们通过监测ATF6、IRE1/XBP1s和PERK通路下游精心挑选的效应蛋白,对分支特异性未折叠蛋白反应(UPR)的激活进行了定量分析,从而能够对神经元衰老过程中UPR的动态变化进行全面、无偏倚的评估。物种特异性分析表明,衰老的神经元虽然表现出一些崩溃的迹象,主要是在内质网到高尔基体的运输机制方面,但在很大程度上仍保持着蛋白质稳态。然而,这些变化伴随着蛋白质稳态相关机制的上调和ATF6分支的激活,以及随着年龄增长UPR的XBP1s和PERK分支的维持。相比之下,胶质细胞表现出蛋白质稳态因子和UPR成分的广泛下调,且与神经元的存在无关。此外,我们对暴露于药理学内质网应激源的老年神经元中选定的UPR分支的刺激特异性调节进行了定量分析。这些发现突出了衰老过程中不同的、细胞类型特异性的应激适应,并为剖析衰老大脑中的蛋白质稳态和UPR调节提供了宝贵的蛋白质组学资源。