Suppr超能文献

基于深度学习的急性缺血性中风中医热证类型预测:一项初步研究。

Heat syndrome types prediction of traditional Chinese medicine in acute ischemic stroke through deep learning: a pilot study.

作者信息

Yu Xiongwu, He Lingqian, Wang Qi, Zhang Zhongyun, Zhu Huaiqiu, Song Juexian

机构信息

Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.

Department of Biomedical Engineering, College of Future Technology, and Center for Quantitative Biology, Peking University, Beijing, China.

出版信息

Front Pharmacol. 2025 Aug 4;16:1601601. doi: 10.3389/fphar.2025.1601601. eCollection 2025.

Abstract

Integrating Chinese medicine and biomedicine for treating acute ischemic stroke (AIS) presents a promising strategy. Accurately predicting Traditional Chinese Medicine (TCM) heat syndrome types in AIS patients is crucial for guiding appropriate medication use within this combined treatment strategy. In this study, a clinical cohort including TCM syndromes, laboratory markers, and baseline assessments, were collected from 193 AIS patients. We developed a deep learning method with Convolutional Neural Networks (CNNs) to predict heat syndrome types in AIS patients by integrating TCM pattern characteristics and laboratory indicators. Feature importance was assessed using SHapley Additive exPlanations (SHAP) and permutation importance, and partial dependence plots (PDP) were used to explore the relationships between features and predictions. The model with the comprehensive feature dataset achieved an accuracy of 0.95, F1 score of 0.95, and AUC of 0.91 on the test set, exhibiting better performance overall compared to predictions based solely on TCM pattern characteristics or laboratory indicators. Key factors associated with the heat syndrome types included Tongue Teeth Marks, Stool, Sweat, Tongue Fissures, glycated hemoglobin (HbA1c), triglycerides (TG), fasting blood glucose (FBG) and total cholesterol (CHO). In conclusion, this study confirms the effectiveness of the CNN model in predicting heat syndrome types in AIS patients when incorporating TCM patterns with biochemical laboratory indicators.

摘要

将中医与生物医学相结合治疗急性缺血性中风(AIS)是一种很有前景的策略。准确预测AIS患者的中医热证类型对于在这种联合治疗策略中指导合理用药至关重要。在本研究中,收集了193例AIS患者的包括中医证候、实验室指标和基线评估的临床队列。我们开发了一种基于卷积神经网络(CNN)的深度学习方法,通过整合中医证型特征和实验室指标来预测AIS患者的热证类型。使用SHapley加性解释(SHAP)和排列重要性评估特征重要性,并使用部分依赖图(PDP)来探索特征与预测之间的关系。在测试集上,具有综合特征数据集的模型准确率达到0.95,F1分数为0.95,AUC为0.91,与仅基于中医证型特征或实验室指标的预测相比,整体表现更好。与热证类型相关的关键因素包括舌齿痕、大便、汗、舌裂纹、糖化血红蛋白(HbA1c)、甘油三酯(TG)、空腹血糖(FBG)和总胆固醇(CHO)。总之,本研究证实了CNN模型在结合中医证型与生化实验室指标预测AIS患者热证类型方面的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da27/12358418/d289455180bb/fphar-16-1601601-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验