Lim Jiekee, Li Jieyun, Zhou Mi, Xiao Xinang, Xu Zhaoxia
School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.
Shanghai Key Laboratory of Health Identification and Assessment, Shanghai, People's Republic of China.
Int J Gen Med. 2024 Nov 19;17:5397-5414. doi: 10.2147/IJGM.S495663. eCollection 2024.
Integrating Traditional Chinese Medicine (TCM) knowledge with modern technology, especially machine learning (ML), has shown immense potential in enhancing TCM diagnostics and treatment. This study aims to systematically review and analyze the trends and developments in ML applications in TCM through a bibliometric analysis.
Data for this study were sourced from the Web of Science Core Collection. Data were analyzed and visualized using Microsoft Office Excel, Bibliometrix, and VOSviewer.
474 documents were identified. The analysis revealed a significant increase in research output from 2000 to 2023, with China leading in both the number of publications and research impact. Key research institutions include the Shanghai University of Traditional Chinese Medicine and the China Academy of Chinese Medical Sciences. Major research hotspots identified include ML applications in TCM diagnosis, network pharmacology, and tongue diagnosis. Additionally, chemometrics with ML are highlighted for their roles in quality control and authentication of TCM products.
This study provides a comprehensive overview of ML applications' development trends and research landscape in TCM. The integration of ML has led to significant advancements in TCM diagnostics, personalized medicine, and quality control, paving the way for the modernization and internationalization of TCM practices. Future research should focus on improving model interpretability, fostering international collaborations, and standardized reporting protocols.
将中医知识与现代技术,尤其是机器学习(ML)相结合,在提升中医诊断和治疗方面展现出了巨大潜力。本研究旨在通过文献计量分析,系统回顾和分析机器学习在中医领域应用的趋势与发展。
本研究的数据来源于科学网核心合集。使用微软办公软件Excel、文献计量学软件(Bibliometrix)和可视化软件(VOSviewer)对数据进行分析和可视化处理。
共识别出474篇文献。分析显示,2000年至2023年期间研究产出显著增加,中国在出版物数量和研究影响力方面均位居首位。主要研究机构包括上海中医药大学和中国中医科学院。确定的主要研究热点包括机器学习在中医诊断、网络药理学和舌诊中的应用。此外,机器学习化学计量学在中药产品质量控制和鉴定中的作用也受到了关注。
本研究全面概述了机器学习在中医领域应用的发展趋势和研究概况。机器学习的整合推动了中医诊断、个性化医疗和质量控制的显著进步,为中医实践的现代化和国际化铺平了道路。未来的研究应侧重于提高模型的可解释性、促进国际合作以及规范报告协议。