Suppr超能文献

通过多实例学习和提示实现医学对话中的症状识别

Symptom Recognition in Medical Conversations Via multi- Instance Learning and Prompt.

作者信息

Wang Hua, Bai Xue-Feng, Cui Xiu-Tao, Chen Gang, Fan Guo-Ming, Wei Guo-Lian, Zheng Ye-Ping, Wu Jing-Jing, Gao Sheng-Sheng

机构信息

School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China.

DewertOKIN Technology Group Co., Ltd., JiaXing, 314000, China.

出版信息

J Med Syst. 2025 Aug 20;49(1):107. doi: 10.1007/s10916-025-02240-w.

Abstract

With the widespread adoption of electronic health record (EHR) systems, there is a crucial need for automatic extraction of key symptom information from medical dialogue to support intelligent medical record generation. However, symptom recognition in such dialogues remains challenging because (a) symptom clues are scattered across multi-turn, unstructured conversations, (b) patient descriptions are often informal and deviate from standardized terminology, and (c) many symptom statements are ambiguous or negated, making them difficult for conventional models to interpret. To address these challenges, we propose a novel symptom identification approach that combines multi-instance learning (MIL) with prompt-guided attention for fine-grained symptom identification. In our framework, each conversation is treated as a bag of utterances. A MIL-based model aggregates information across utterances to improve recall and pinpoints which specific utterances mention each symptom, thus enabling sentence-level symptom recognition. Concurrently, a prompt-guided attention strategy leverages standardized symptom terminology as prior knowledge to guide the model in recognizing synonyms, implicit symptom mentions, and negations, thereby improving precision. We further employ R-Drop regularization to enhance robustness against noisy inputs. Experiments on public medical-dialogue datasets demonstrate that our method significantly outperforms existing techniques, achieving an 85.93% F1-score (with 85.09% precision and 86.83% recall) - about 8% points higher than a strong multi-label classification baseline. Notably, our model accurately identifies the specific utterances corresponding to each symptom mention (symptom-utterance pairs), highlighting its fine-grained extraction capability. Ablation studies confirm that the MIL component boosts recall, while the prompt-guided attention component reduces false positives. By precisely locating symptom information within conversations, our approach effectively tackles the issues of dispersed data and inconsistent expressions. This fine-grained symptom documentation capability represents a promising advancement for automated medical information extraction, more intelligent EHR systems, and diagnostic decision support.

摘要

随着电子健康记录(EHR)系统的广泛采用,迫切需要从医疗对话中自动提取关键症状信息,以支持智能病历生成。然而,在此类对话中的症状识别仍然具有挑战性,原因如下:(a)症状线索分散在多轮无结构对话中;(b)患者描述通常不规范,与标准化术语存在偏差;(c)许多症状陈述具有歧义或是否定的,这使得传统模型难以解读。为应对这些挑战,我们提出了一种新颖的症状识别方法,该方法将多实例学习(MIL)与提示引导注意力相结合,用于细粒度症状识别。在我们的框架中,每个对话被视为一袋话语。基于MIL的模型聚合话语间的信息以提高召回率,并确定哪些特定话语提及了每种症状,从而实现句子级症状识别。同时,提示引导注意力策略利用标准化症状术语作为先验知识,指导模型识别同义词、隐含症状提及和否定词,从而提高精确率。我们还采用R-Drop正则化来增强对噪声输入的鲁棒性。在公共医疗对话数据集上的实验表明,我们的方法显著优于现有技术,F1分数达到85.93%(精确率为85.09%,召回率为86.83%),比强大的多标签分类基线高出约8个百分点。值得注意的是,我们的模型能够准确识别与每个症状提及相对应的特定话语(症状-话语对),突出了其细粒度提取能力。消融研究证实,MIL组件提高了召回率,而提示引导注意力组件减少了误报。通过在对话中精确定位症状信息,我们的方法有效地解决了数据分散和表达不一致的问题。这种细粒度症状记录能力代表了自动医疗信息提取、更智能的EHR系统和诊断决策支持方面的一项有前景的进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验