Desai Mitali, Desai Binita
Department of Information Technology, Sarvajanik College of Engineering and Technology (SCET), Surat, Gujarat, 395001, India.
Tribhuvandas Foundation, Anand, Gujarat, 388001, India.
Cancer Causes Control. 2025 Aug 20. doi: 10.1007/s10552-025-02048-6.
Artificial Intelligence (AI) is revolutionizing the prevention and control of breast cancer by improving risk assessment, prevention, and early diagnosis. Considering an emphasis on AI applications across the women's breast cancer spectrum, this review summarizes developments, existing applications, and future potential prospects.
We conducted an in-depth review of the literature on AI applications in breast cancer risk prediction, prevention, and early detection from 2000 to 2025, with particular emphasis on Explainable AI (XAI), deep learning (DL), and machine learning (ML). We examined algorithmic fairness, model transparency, dataset representation, and clinical performance indicators.
As compared to traditional methods, AI-based models continuously enhanced risk categorization, screening sensitivity, and early detection (AUCs ranging from 0.65 to 0.975). However, challenges remain in algorithmic bias, underrepresentation of minority populations, and limited external validation. Remarkably, 58% of public datasets focused on mammography, leaving gaps in modalities such as tomosynthesis and histopathology.
AI technologies have an enormous number of opportunities for enhancing the diagnosis and treatment of breast cancer. However, transparent models, inclusive datasets, and standardized frameworks for explainability and external validation should be given the greatest attention in subsequent studies to ensure equitable and effective implementation.
人工智能(AI)正在通过改进风险评估、预防和早期诊断,彻底改变乳腺癌的预防和控制。考虑到人工智能在女性乳腺癌各个方面的应用受到重视,本综述总结了其发展、现有应用及未来潜在前景。
我们对2000年至2025年期间关于人工智能在乳腺癌风险预测、预防和早期检测方面应用的文献进行了深入综述,特别强调了可解释人工智能(XAI)、深度学习(DL)和机器学习(ML)。我们研究了算法公平性、模型透明度、数据集代表性和临床性能指标。
与传统方法相比,基于人工智能的模型不断提高风险分类、筛查敏感性和早期检测能力(曲线下面积范围为0.65至0.975)。然而,在算法偏差、少数群体代表性不足和外部验证有限等方面仍存在挑战。值得注意的是,58%的公共数据集集中在乳腺钼靶摄影,在断层合成和组织病理学等模式方面存在空白。
人工智能技术在增强乳腺癌诊断和治疗方面有大量机会。然而,在后续研究中应高度关注透明模型、包容性数据集以及用于可解释性和外部验证的标准化框架,以确保公平有效的实施。