Suppr超能文献

一种用于小儿骨肉瘤预后的TARGET数据库驱动的列线图。

A TARGET database-driven nomogram for pediatric osteosarcoma prognosis.

作者信息

Li Jianfeng, Li Jiayi, Wang Jianjun, Li Bingquan

机构信息

Zhuhai People's Hospital (Jinan University Zhuhai Clinical Medical College), No. 79 Kangning Road, Xiangzhou District, Zhuhai City, Guangdong Province, 519000, China.

出版信息

Discov Oncol. 2025 Aug 20;16(1):1586. doi: 10.1007/s12672-025-03359-5.

Abstract

OBJECTIVE

To analyze risk factors for pediatric osteosarcoma and to construct and evaluate a risk prediction model for pediatric osteosarcoma.

METHODS

We retrospectively analyzed data from patients diagnosed with osteosarcoma between 2000 and 2013 (n = 129) from the TARGET database. First, independent prognostic factors associated with osteosarcoma-specific death were identified through Cox proportional hazards modeling. Subsequently, using these independent prognostic factors, a nomogram model for osteosarcoma-specific survival was constructed using SPSS 25.0 and R 4.1.1. The discrimination of the model was evaluated using the C-index, predictive ability was validated through receiver operating characteristic curves and area under the curve values, calibration was assessed using calibration curves, and clinical utility was measured by decision curve analysis. Additionally, Kaplan-Meier survival analysis was performed to test the rationality of nomogram grouping.

RESULTS

The final model included six variables: sex, race, tumor-specific side, tumor-specific region, site of first recurrence, and time of first recurrence. The C-indices of the model for predicting 3-year and 5-year survival rates were 0.802 (95% CI: 0.725-0.880) and 0.787 (95% CI: 0.710-0.864), respectively, indicating good discriminatory ability. Calibration curves showed high consistency between predicted and actual survival probabilities. Decision curve analysis indicated that the model has substantial net benefit across a wide range of mortality risk thresholds. Kaplan-Meier survival analysis showed significant differences in prognosis between high-risk and low-risk groups. The nomogram model constructed in this study can accurately predict 1-year, 3-year, and 5-year survival of pediatric osteosarcoma patients and has high clinical utility.

CONCLUSION

This model not only provides an effective survival prediction tool for patients but also offers important references for optimizing treatment strategies for pediatric osteosarcoma, with the aim of improving survival rates and quality of life for osteosarcoma patients.

摘要

目的

分析儿童骨肉瘤的危险因素,并构建和评估儿童骨肉瘤的风险预测模型。

方法

我们回顾性分析了TARGET数据库中2000年至2013年间诊断为骨肉瘤的患者数据(n = 129)。首先,通过Cox比例风险模型确定与骨肉瘤特异性死亡相关的独立预后因素。随后,使用这些独立预后因素,利用SPSS 25.0和R 4.1.1构建骨肉瘤特异性生存的列线图模型。使用C指数评估模型的区分度,通过受试者操作特征曲线和曲线下面积值验证预测能力,使用校准曲线评估校准情况,并通过决策曲线分析测量临床实用性。此外,进行Kaplan-Meier生存分析以检验列线图分组的合理性。

结果

最终模型包括六个变量:性别、种族、肿瘤特定侧、肿瘤特定区域、首次复发部位和首次复发时间。预测3年和5年生存率模型的C指数分别为0.802(95%CI:0.725 - 0.880)和0.787(95%CI:0.710 - 0.864),表明具有良好的区分能力。校准曲线显示预测生存概率与实际生存概率高度一致。决策曲线分析表明,该模型在广泛的死亡风险阈值范围内具有显著的净效益。Kaplan-Meier生存分析显示高危组和低危组预后存在显著差异。本研究构建的列线图模型能够准确预测儿童骨肉瘤患者1年、3年和5年生存率,具有较高的临床实用性。

结论

该模型不仅为患者提供了有效的生存预测工具,也为优化儿童骨肉瘤治疗策略提供了重要参考,旨在提高骨肉瘤患者的生存率和生活质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/217f/12367597/ad82852d43bd/12672_2025_3359_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验