Suppr超能文献

使用机器学习模型预测重症监护病房淋巴瘤患者的院内死亡率。

Predicting in-hospital mortality in ICU patients with lymphoma using machine learning models.

作者信息

Xu Ling, Tu Guang, Cai Zhonglan, Lan Tianbi

机构信息

Breast Department, Dongguan Hospital, Guangzhou University of Traditional Chinese Medicine, Dongguan, China.

Department of Cardiology, Lichuan People's Hospital, Fuzhou, China.

出版信息

PLoS One. 2025 Aug 20;20(8):e0330197. doi: 10.1371/journal.pone.0330197. eCollection 2025.

Abstract

BACKGROUND

Lymphoma is a severe condition with high mortality rates, often requiring ICU admission. Traditional risk stratification tools like SOFA and APACHE scores struggle to capture complex clinical interactions. Machine learning (ML) models offer a more accurate alternative for predicting outcomes by analyzing large datasets. However, their application in predicting in-hospital mortality for lymphoma patients remains limited.

OBJECTIVE

This study aims to develop and validate machine learning models to predict in-hospital mortality in ICU patients with lymphoma using data from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database, thereby enhancing risk stratification and clinical decision-making.

METHODS

We conducted a retrospective cohort study using data from the MIMIC-IV database, which includes detailed clinical data from adult patients admitted to the ICU. Patients with a primary diagnosis of lymphoma were included. Baseline characteristics, laboratory parameters, and clinical outcomes were extracted. Lasso regression was employed to screen for significant risk factors associated with in-hospital mortality. Fifteen machine learning models, including logistic regression, random forest, gradient boosting, and neural networks, were developed and compared using receiver operating characteristic (ROC) curves and area under the curve (AUC) analysis. Model performance was evaluated through cross-validation and SHapley Additive exPlanation (SHAP) values to interpret variable importance.

RESULTS

A total of 1591 patients were included, with 342 (21.5%) in-hospital deaths. Lasso regression identified significant predictors of mortality, including blood urea nitrogen (BUN), platelets, PT, heart rate, systolic blood pressure, APTT, spo2, and bicarbonate. The CatBoost Classifier demonstrated the highest predictive performance with an AUC of 0.7766. SHAP analysis highlighted the critical role of BUN as the most important factor in mortality prediction, followed by platelets and PT. The SHAP force plot provided individualized risk assessments for patients, demonstrating the model's ability to identify high-risk subgroups.

CONCLUSION

Machine learning models, particularly the CatBoost Classifier, effectively predict in-hospital mortality in ICU patients with lymphoma. These models outperform traditional statistical methods and provide valuable insights into risk stratification. Future work should focus on external validation and clinical implementation to improve patient outcomes in this high-risk population.

摘要

背景

淋巴瘤是一种死亡率很高的严重疾病,通常需要入住重症监护病房(ICU)。像序贯器官衰竭评估(SOFA)和急性生理与慢性健康状况评分系统(APACHE)这样的传统风险分层工具难以捕捉复杂的临床相互作用。机器学习(ML)模型通过分析大型数据集为预测结果提供了更准确的选择。然而,它们在预测淋巴瘤患者院内死亡率方面的应用仍然有限。

目的

本研究旨在开发并验证机器学习模型,利用重症监护医学信息集市IV(MIMIC-IV)数据库的数据预测ICU淋巴瘤患者院内死亡率,从而加强风险分层和临床决策。

方法

我们使用MIMIC-IV数据库的数据进行了一项回顾性队列研究,该数据库包含入住ICU的成年患者的详细临床数据。纳入原发性诊断为淋巴瘤的患者。提取基线特征、实验室参数和临床结局。采用套索回归筛选与院内死亡率相关的显著风险因素。开发了包括逻辑回归、随机森林、梯度提升和神经网络在内的15种机器学习模型,并使用受试者工作特征(ROC)曲线和曲线下面积(AUC)分析进行比较。通过交叉验证和夏普利值(SHAP)评估模型性能,以解释变量的重要性。

结果

共纳入1591例患者,其中342例(21.5%)院内死亡。套索回归确定了死亡率的显著预测因素,包括血尿素氮(BUN)、血小板、凝血酶原时间(PT)、心率、收缩压、活化部分凝血活酶时间(APTT)、血氧饱和度(spo2)和碳酸氢盐。CatBoost分类器表现出最高的预测性能,AUC为0.7766。SHAP分析突出了BUN作为死亡率预测中最重要因素的关键作用,其次是血小板和PT。SHAP力图为患者提供个性化风险评估,证明了该模型识别高危亚组的能力。

结论

机器学习模型,特别是CatBoost分类器,能有效预测ICU淋巴瘤患者的院内死亡率。这些模型优于传统统计方法,并为风险分层提供了有价值的见解。未来的工作应侧重于外部验证和临床应用,以改善这一高危人群的患者结局。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7261/12367167/1289e76e1e7e/pone.0330197.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验