Erdoğan Mahmut Sami
Department of Statistics, Faculty of Engineering and Natural Sciences, Istanbul Medeniyet University, Istanbul, Turkey.
PLoS One. 2025 Aug 20;20(8):e0330175. doi: 10.1371/journal.pone.0330175. eCollection 2025.
The receiver operating characteristic (ROC) curve is a commonly used statistical method to assess the efficacy of a diagnostic test or biomarker measured on a continuous scale. This work presents a versatile approach using a non-uniform rational B-spline (NURBS) for estimating the ROC curve. This approach uses control points, weights, and the knot sequence to more accurately estimate the true ROC curve. The new method applies linear constraints to the NURBS basis function coefficients to smooth the empirical ROC curve and guarantee a non-decreasing function. Moreover, as a specific case, a NURBS curve devoid of interior knots simplifies to the Bernstein polynomial when all weight values are equal. We conduct Monte Carlo simulation studies to evaluate how well the NURBS-based estimator works in different scenarios. We compare our estimator to the empirical ROC, the kernel-based ROC, and Bernstein polynomial estimators in terms of the averaged squared errors. We also apply our method to two real medical datasets, such as metastatic kidney cancer and diffuse large B-cell lymphoma datasets. According to the findings from both the real and simulated data, the NURBS method is a powerful alternative for estimating the ROC curve.
受试者工作特征(ROC)曲线是一种常用的统计方法,用于评估以连续尺度测量的诊断测试或生物标志物的功效。这项工作提出了一种使用非均匀有理B样条(NURBS)估计ROC曲线的通用方法。该方法使用控制点、权重和节点序列来更准确地估计真实的ROC曲线。新方法对NURBS基函数系数应用线性约束,以平滑经验ROC曲线并保证函数非递减。此外,作为一种特殊情况,当所有权重值相等时,没有内部节点的NURBS曲线简化为伯恩斯坦多项式。我们进行蒙特卡罗模拟研究,以评估基于NURBS的估计器在不同场景下的效果。我们在平均平方误差方面将我们的估计器与经验ROC、基于核的ROC和伯恩斯坦多项式估计器进行比较。我们还将我们的方法应用于两个真实的医学数据集,如转移性肾癌和弥漫性大B细胞淋巴瘤数据集。根据真实数据和模拟数据的结果,NURBS方法是估计ROC曲线的一种强大替代方法。