Suppr超能文献

考虑腺泡气道动态行为的大气气溶胶-微塑料在肺泡区域的吸入与沉积。

Atmospheric aerosol-microplastics intake and deposition in the alveolar region by considering dynamic behavior of acinar airways.

作者信息

Beni Hamidreza Mortazavy, Mortazavi Hamed, Larpruenrudee Puchanee, Gu YuanTong, Sauret Emilie, Islam Mohammad S

机构信息

Department of Biomedical Engineering, Ars. C., Islamic Azad University, Arsanjan, Iran.

School of Mechanical and Mechatronic Engineering, University of Technology Sydney (UTS), Ultimo, New South Wales, Australia.

出版信息

PLoS One. 2025 Aug 20;20(8):e0327416. doi: 10.1371/journal.pone.0327416. eCollection 2025.

Abstract

BACKGROUND AND OBJECTIVE

Atmospheric aerosols from different industrial and natural sources enter the airways during inhalation. The smaller respirable aerosols enter the alveolar sacs and, depending on the residence time and toxicity, create severe respiratory health hazards. The physiological movement of the alveolar sacs is an important feature of breathing dynamics. Therefore, the knowledge of the dynamic behavior of the alveolar airways during airflow and aerosol transport is essential for the accurate health risk assessment of respiratory aerosols.

METHODS

This study analyzed the physiological movements of the alveolar sac and its impact on airflow and particle deposition in the acinar region. In the present study, the dynamic acinar model uses a Computational Fluid-Particle Dynamics (CFPD). The boundary condition of moving walls is presented by introducing a novel strategic motion function of the alveoli (Eq. 5) compatible with the physiological function of the lung.

RESULTS

The results of the present study indicated that particle density is a determining factor in increasing the percentage of particle pollution deposition lower than 3 µm. The study also reports that the air amplitude velocity (~0.01 vs. 0.00085 m/s) is a crucial index in the particle pollution deposition in alveoli.

CONCLUSIONS

To date, several studies analyzed the airflow in acinar sections. However, a comprehensive analysis of the physiological behavior of the alveolar sacs is missing in the literature. The specific findings of this study would improve the knowledge of airborne particle transmission in the alveolar zone.

摘要

背景与目的

来自不同工业和自然源的大气气溶胶在吸入过程中进入气道。较小的可吸入气溶胶进入肺泡囊,并根据停留时间和毒性造成严重的呼吸健康危害。肺泡囊的生理运动是呼吸动力学的一个重要特征。因此,了解气流和气溶胶传输过程中肺泡气道的动态行为对于准确评估呼吸道气溶胶的健康风险至关重要。

方法

本研究分析了肺泡囊的生理运动及其对腺泡区域气流和颗粒沉积的影响。在本研究中,动态腺泡模型采用计算流体-颗粒动力学(CFPD)。通过引入一种与肺生理功能相兼容的新型肺泡策略运动函数(式5)来呈现移动壁的边界条件。

结果

本研究结果表明,颗粒密度是增加粒径小于3μm的颗粒污染沉积百分比的决定因素。该研究还报告称,空气振幅速度(~0.01对0.00085 m/s)是肺泡中颗粒污染沉积的关键指标。

结论

迄今为止,已有多项研究分析了腺泡节段的气流。然而,文献中缺少对肺泡囊生理行为的全面分析。本研究的具体发现将增进对肺泡区空气中颗粒传播的认识。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验