Pan Qing, Wu Wei, Jing Doudou, Huang Wei, Cui Yongzhi, Zhang Zhicai, Shao Zengwu, Hu Hongzhi, Yang Wenbo
Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
Department of Orthopaedics, Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi 030001, China.
ACS Nano. 2025 Sep 2;19(34):30786-30809. doi: 10.1021/acsnano.5c00223. Epub 2025 Aug 20.
Osteosarcoma is a highly aggressive bone tumor with limited treatment options because of its drug resistance and tumor heterogeneity. In this study, we developed a multifunctional nanomaterial, P-FeO@Pal@HM, combining porous FeO nanoparticles, the DNA intercalator palmatine, and a hybrid membrane coating derived from osteosarcoma cells and tumor-associated endothelial cells. The FeO core facilitates a Fenton-like reaction, generating reactive oxygen species (ROS) to enhance DNA damage, whereas palmatine (Pal) inhibits RRM2 (ribonucleotide reductase regulatory subunit M2) expression, blocking DNA repair and inducing apoptosis. The hybrid membrane coating provides precise targeting of both tumor and endothelial cells, thus addressing the challenge of tumor heterogeneity. Under low-temperature photothermal conditions, the Fenton-like reaction is further enhanced, boosting ROS production and increasing cytotoxicity. This nanomaterial also modulates the immune microenvironment by promoting M1 macrophage polarization, thereby amplifying the antitumor immune response. P-FeO@Pal@HM demonstrated superior therapeutic efficacy to conventional treatments, significantly reducing tumor volume and inducing apoptosis with minimal toxicity to normal tissues. This innovative approach offers a promising strategy to overcome drug resistance, improve tumor targeting, and enhance treatment outcomes in osteosarcoma. The multifunctional design of P-FeO@Pal@HM highlights its potential as an advanced therapeutic platform in osteosarcoma.
骨肉瘤是一种侵袭性很强的骨肿瘤,由于其耐药性和肿瘤异质性,治疗选择有限。在本研究中,我们开发了一种多功能纳米材料P-FeO@Pal@HM,它结合了多孔FeO纳米颗粒、DNA嵌入剂巴马汀和一种由骨肉瘤细胞及肿瘤相关内皮细胞衍生而来的混合膜涂层。FeO核心促进类芬顿反应,产生活性氧(ROS)以增强DNA损伤,而巴马汀(Pal)抑制核糖核苷酸还原酶调节亚基M2(RRM2)的表达,阻断DNA修复并诱导细胞凋亡。混合膜涂层能精准靶向肿瘤细胞和内皮细胞,从而应对肿瘤异质性的挑战。在低温光热条件下,类芬顿反应进一步增强,促进ROS生成并增加细胞毒性。这种纳米材料还通过促进M1巨噬细胞极化来调节免疫微环境,从而增强抗肿瘤免疫反应。P-FeO@Pal@HM显示出优于传统治疗的疗效,显著减小肿瘤体积并诱导细胞凋亡,同时对正常组织的毒性最小。这种创新方法为克服骨肉瘤的耐药性、改善肿瘤靶向性和提高治疗效果提供了一种有前景的策略。P-FeO@Pal@HM的多功能设计突出了其作为骨肉瘤先进治疗平台的潜力。
J Colloid Interface Sci. 2025-11-15
Acta Biomater. 2025-1-24
Colloids Surf B Biointerfaces. 2025-10
Eur J Pharm Sci. 2024-12-1
J Phys Chem Lett. 2024-10-24
J Hematol Oncol. 2024-8-20
Front Immunol. 2024
Mol Cancer. 2023-11-18
Curr Opin Biotechnol. 2023-12
Pharmaceutics. 2023-9-18